5,267 research outputs found

    Inverse versus Normal NiAs Structure as High-Pressure Phase of FeO and MnO

    Full text link
    The high-pressure phases of FeO and MnO were studied by the first principles calculations. The present theoretical study predicts that the high-pressure phase of MnO is a metallic normal B8 structure (nB8), while that of FeO should take the inverse B8 structure (iB8). The novel feature of the unique high-pressure phase of stoichiometric FeO is that the system should be a band insulator in the ordered antiferromagnetic (AF) state and that the existence of a band gap leads to special stability of the phase. The observed metallicity of the high-pressure and high-temperature phase of FeO may be caused by the loss of AF order and also by the itinerant carriers created by non-stoichiometry. Analysis of x-ray diffraction experiments provides a further support to the present theoretical prediction for both FeO and MnO. Strong stability of the high-pressure phase of FeO will imply possible important roles in Earth's core.Comment: 7 pages, 3 figures and 1 table; submitted to "Nature

    A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks

    Get PDF
    The evolution of the magnetorotational instability (MRI) during the transition from outburst to quiescence in a dwarf nova disk is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted for the analysis, so that the efficiency of angular momentum transport is studied in a small local patch of the disk: this is usually referred as to a one-zone model. To take account of the low ionization fraction of the disk, the induction equation includes both ohmic dissipation and the Hall effect. We induce a transition from outburst to quiescence by an instantaneous decrease of the temperature. The evolution of the MRI during the transition is found to be very sensitive to the temperature of the quiescent disk. As long as the temperature is higher than a critical value of about 2000 K, MHD turbulence and angular momentum transport is sustained by the MRI. However, MHD turbulence dies away within an orbital time if the temperature falls below this critical value. In this case, the stress drops off by more than 2 orders of magnitude, and is dominated by the Reynolds stress associated with the remnant motions from the outburst. The critical temperature depends slightly on the distance from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap

    Hydrodynamic Simulations of Counterrotating Accretion Disks

    Get PDF
    Hydrodynamic simulations have been used to study accretion disks consisting of counterrotating components with an intervening shear layer(s). Configurations of this type can arise from the accretion of newly supplied counterrotating matter onto an existing corotating disk. The grid-dependent numerical viscosity of our hydro code is used to simulate the influence of a turbulent viscosity of the disk. Firstly, we consider the case where the gas well above the disk midplane rotates with angular rate +\Omega(r) and that well below has the same properties but rotates with rate -\Omega(r). We find that there is angular momentum annihilation in a narrow equatorial boundary layer in which matter accretes supersonically with a velocity which approaches the free-fall velocity and the average accretion speed of the disk can be enormously larger than that for a conventional \alpha-disk rotating in one direction. Secondly, we consider the case of a corotating accretion disk for rr_t. In this case we observed, that matter from the annihilation layer lost its stability and propagated inward pushing matter of inner regions of the disk to accrete. Thirdly, we investigated the case where counterrotating matter inflowing from large radial distances encounters an existing corotating disk. Friction between the inflowing matter and the existing disk is found to lead to fast boundary layer accretion along the disk surfaces and to enhanced accretion in the main disk. These models are pertinent to the formation of counterrotating disks in galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary systems.Comment: LaTeX, 18 pages, to appear in Ap

    First-Principles Computation of YVO3; Combining Path-Integral Renormalization Group with Density-Functional Approach

    Full text link
    We investigate the electronic structure of the transition-metal oxide YVO3 by a hybrid first-principles scheme. The density-functional theory with the local-density-approximation by using the local muffin-tin orbital basis is applied to derive the whole band structure. The electron degrees of freedom far from the Fermi level are eliminated by a downfolding procedure leaving only the V 3d t2g Wannier band as the low-energy degrees of freedom, for which a low-energy effective model is constructed. This low-energy effective Hamiltonian is solved exactly by the path-integral renormalization group method. It is shown that the ground state has the G-type spin and the C-type orbital ordering in agreement with experimental indications. The indirect charge gap is estimated to be around 0.7 eV, which prominently improves the previous estimates by other conventional methods

    Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    Full text link
    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM and CSM modes. Taken together our findings highlight that for transmission electron microscopy performed at low energies (energies <100 keV) thick hybrid pixel detectors provide an advantageous and alternative architecture for direct electron imagin

    Characterisation of the Medipix3 detector for 60 and 80 keV electrons

    Get PDF
    In this paper we report quantitative measurements of the imaging performance for the current generation of hybrid pixel detector, Medipix3, used as a direct electron detector. We have measured the modulation transfer function and detective quantum efficiency at beam energies of 60 and 80 keV. In single pixel mode, energy threshold values can be chosen to maximize either the modulation transfer function or the detective quantum efficiency, obtaining values near to, or exceeding those for a theoretical detector with square pixels. The Medipix3 charge summing mode delivers simultaneous, high values of both modulation transfer function and detective quantum efficiency. We have also characterized the detector response to single electron events and describe an empirical model that predicts the detector modulation transfer function and detective quantum efficiency based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance recording a fully exposed electron diffraction pattern at 24-bit depth together with images in single pixel and charge summing modes. Our findings highlight that for transmission electron microscopy performed at low energies (energies &lt;100 keV) thick hybrid pixel detectors provide an advantageous architecture for direct electron imaging

    A Highly Antibacterial Achievement of Hollow Fiber Polyethersulfone (PES) Membrane Loaded with Silver Nanoparticles

    Get PDF
    A highly antibacterial of hollow fiber polyethersulfone (PES) membrane was prepared by loading silver nanoparticles within the PES graft acrylamide (AAm)-membrane. The grafted layers of AAm were provided the matrix for silver nanoparticles (AgNPs) entrapment. The characterization of the prepared hollowfiber (HF) PES membrane loaded with silver nanoparticles were examined by using transmission electron microscopy (TEM). To examine the antibacterial property of the prepared AgNPs-AAm-PES membrane, the halo zone and the shaking flask test were carried out. In these tests, both of unmodified PES membrane and AgNPs-AAm-PES membrane were exposed to pure culture suspension of Escherichia coli (E. Coli) bacteria with the concentration of 107 CFU/ml. The viable bacteria formed within the membrane surfaces and themembrane circumferences were observed by the halo zone formation, while the percentage of bacteria killing ratio was determined by shaking flask test method. The TEM results showed that the silver nanoparticles were formed within grafted layers of AAm-PES membrane and the size of silver nanoparticleswere about 10 nm. The AgNPs-AAm-PES membrane were highly effective to prevent the membrane biofouling as shown by the clearly halo zone formation compared with the unmodified PES membrane. The shake flask test were also revealed that almost 99.9 percent of the E. coli bacteria were killed when theyhaving exposed to the AgNPs-AAm-PES membrane. This was due to the silver ions are allowed to release from its membrane surfac
    • …
    corecore