80 research outputs found

    Resonance nonlinear reflection from neutron star and additional radiation components of Crab pulsar

    Get PDF
    Additional high-frequency components of the pulsar radiation in Crab Nebula are considered as a result of the resonance with the surface electromagnetic wave at nonlinear reflection from of the neutron star surface.This stimulated scattering consists in generation of a surface periodic relief by an incident field and diffraction on that relief the radiation of relativistic positrons, which fly from the magnetosphere to the star in the accelerating electric field of a polar gap.Comment: 6 pages, 2 figures; The Report on the Conference "PLASMA ELECTRONICS AND NEW ACCELERATION METHODS" 27-31 August 2018, Kharkov, Ukraine. We have added some figures, refs, footnotes and clarified some notation in the tex

    Resonantly suppressed transmission and anomalously enhanced light absorption in ultrathin metal films

    Full text link
    We study light diffraction in the periodically modulated ultrathin metal films both analytically and numerically. Without modulation these films are almost transparent. The periodicity results in the anomalous effects, such as suppression of the transmittance accompanied by a strong enhancement of the absorptivity and specular reflectivity, due to excitation of the surface plasmon polaritons. These phenomena are opposite to the widely known enhanced transparency of periodically modulated optically thick metal films. Our theoretical analysis can be a starting point for the experimental investigation of these intriguing phenomena.Comment: 4 pages, 5 figure

    Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations

    Get PDF
    Parity and time invariance violating forces produce collective P- and T- odd moments in nuclei with static octupole deformation. Collective Schiff moment, electric octupole and dipole and also magnetic quadrupole appear due to the mixing of rotational levels of opposite parity and can exceed single-particle moments by more than a factor of 100. This enhancement is due to two factors, the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. The above moments induce T- and P- odd effects in atoms and molecules. Experiments with such systems may improve substantially the limits on time reversal violation.Comment: 9 pages, Revte

    Time invariance violating nuclear electric octupole moments

    Get PDF
    The existence of a nuclear electric octupole moment (EOM) requires both parity and time invariance violation. The EOMs of odd ZZ nuclei that are induced by a particular T- and P-odd interaction are calculated. We compare such octupole moments with the collective EOMs that can occur in nuclei having a static octupole deformation. A nuclear EOM can induce a parity and time invariance violating atomic electric dipole moment, and the magnitude of this effect is calculated. The contribution of a nuclear EOM to such a dipole moment is found, in most cases, to be smaller than that of other mechanisms of atomic electric dipole moment production.Comment: Uses RevTex, 25 page

    Enhanced T-odd P-odd Electromagnetic Moments in Reflection Asymmetric Nuclei

    Get PDF
    Collective P- and T- odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than two orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P- odd effects in atoms and molecules. First a simple estimate is given and then a detailed theoretical treatment of the collective T-, P- odd electric moments in reflection asymmetric, odd-mass nuclei is presented and various corrections evaluated. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation.Comment: 28 pages, Revte

    Calculation of parity and time invariance violation in the radium atom

    Get PDF
    Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the atomic electric dipole moments (EDM) produced by the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We have also calculated the effects of parity non-conservation produced by the nuclear anapole moment and the weak charge. Our results show that as a rule the values of these effects are much larger than those considered so far in other atoms (enhancement is up to 10^5 times).Comment: 18 pages; LaTeX; Submitted to Phys. Rev.

    Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States

    Get PDF
    We discuss the implications of a doorway state model for parity mixing in compound nuclear states. We argue that in order to explain the tendency of parity violating asymmetries measured in 233^{233}Th to have a common sign, doorways that contribute to parity mixing must be found in the same energy neighbourhood of the measured resonance. The mechanism of parity mixing in this case of nearby doorways is closely related to the intermediate structure observed in nuclear reactions in which compound states are excited. We note that in the region of interest (233^{233}Th) nuclei exhibit octupole deformations which leads to the existence of nearby parity doublets. These parity doublets are then used as doorways in a model for parity mixing. The contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    A neurally-inspired musical instrument classification system based upon the sound onset

    Get PDF
    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset
    corecore