5,904 research outputs found

    Escaping from nonhyperbolic chaotic attractors

    Full text link
    We study the noise-induced escape process from chaotic attractors in nonhyperbolic systems. We provide a general mechanism of escape in the low noise limit, employing the theory of large fluctuations. Specifically, this is achieved by solving the variational equations of the auxiliary Hamiltonian system and by incorporating the initial conditions on the chaotic attractor unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map and can be implemented straightforwardly to experimental data.Comment: replaced with published versio

    Dynamics of axial separation in long rotating drums

    Full text link
    We propose a continuum description for the axial separation of granular materials in a long rotating drum. The model, operating with two local variables, concentration difference and the dynamic angle of repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR

    Expansions for the Bollobas-Riordan polynomial of separable ribbon graphs

    Full text link
    We define 2-decompositions of ribbon graphs, which generalise 2-sums and tensor products of graphs. We give formulae for the Bollobas-Riordan polynomial of such a 2-decomposition, and derive the classical Brylawski formula for the Tutte polynomial of a tensor product as a (very) special case. This study was initially motivated from knot theory, and we include an application of our formulae to mutation in knot diagrams.Comment: Version 2 has minor changes. To appear in Annals of Combinatoric

    Velocity correlations in dense granular gases

    Full text link
    We report the statistical properties of spherical steel particles rolling on an inclined surface being driven by an oscillating wall. Strong dissipation occurs due to collisions between the particles and rolling and can be tuned by changing the number density. The velocities of the particles are observed to be correlated over large distances comparable to the system size. The distribution of velocities deviates strongly from a Gaussian. The degree of the deviation, as measured by the kurtosis of the distribution, is observed to be as much as four times the value corresponding to a Gaussian, signaling a significant breakdown of the assumption of negligible velocity correlations in a granular system.Comment: 4 pages, 4 Figure

    Propagating front in an excited granular layer

    Full text link
    A partial monolayer of ~ 20000 uniform spherical steel beads, vibrated vertically on a flat plate, shows remarkable ordering transitions and cooperative behavior just below 1g maximum acceleration. We study the stability of a quiescent disordered or ``amorphous'' state formed when the acceleration is switched off in the excited ``gaseous'' state. The transition from the amorphous state back to the gaseous state upon increasing the plate's acceleration is generally subcritical: An external perturbation applied to one bead initiates a propagating front that produces a rapid transition. We measure the front velocity as a function of the applied acceleration. This phenomenon is explained by a model based on a single vibrated particle with multiple attractors that is perturbed by collisions. A simulation shows that a sufficiently high rate of interparticle collisions can prevent trapping in the attractor corresponding to the nonmoving ground state.Comment: 16 pages, 9 figures, revised version, to appear in Phys. Rev. E, May 199

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure

    Phase transition in inelastic disks

    Full text link
    This letter investigates the molecular dynamics of inelastic disks without external forcing. By introducing a new observation frame with a rescaled time, we observe the virtual steady states converted from asymptotic energy dissipation processes. System behavior in the thermodynamic limit is carefully investigated. It is found that a phase transition with symmetry breaking occurs when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure

    Clustering and Non-Gaussian Behavior in Granular Matter

    Full text link
    We investigate the properties of a model of granular matter consisting of NN Brownian particles on a line subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the mean values of the energy and the energy dissipation. When the typical relaxation time τ\tau associated with the Brownian process is small compared with the mean collision time τc\tau_c the spatial density is nearly homogeneous and the velocity probability distribution is gaussian. In the opposite limit ττc\tau \gg \tau_c one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected typos, minimally changed contents and abstract, to published in Phys.Rev.Lett. (tentatively on 28th of October, 1998

    Inelastic Collapse of Three Particles

    Full text link
    A system of three particles undergoing inelastic collisions in arbitrary spatial dimensions is studied with the aim of establishing the domain of ``inelastic collapse''---an infinite number of collisions which take place in a finite time. Analytic and simulation results show that for a sufficiently small restitution coefficient, 0r<7430.0720\leq r<7-4\sqrt{3}\approx 0.072, collapse can occur. In one dimension, such a collapse is stable against small perturbations within this entire range. In higher dimensions, the collapse can be stable against small variations of initial conditions, within a smaller rr range, 0r<9450.0560\leq r<9-4\sqrt{5}\approx 0.056.Comment: 6 pages, figures on request, accepted by PR

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe
    corecore