8,500 research outputs found

    Pion Decay Constant, ZAZ_A and Chiral Log from Overlap Fermions

    Get PDF
    We report our calculation of the pion decay constant fπf_\pi, the axial renormalization constant ZAZ_A, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20420^4 lattice at a=0.148a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure

    On the Origin of the Dark Gamma-Ray Bursts

    Get PDF
    The origin of dark bursts - i.e. that have no observed afterglows in X-ray, optical/NIR and radio ranges - is unclear yet. Different possibilities - instrumental biases, very high redshifts, extinction in the host galaxies - are discussed and shown to be important. On the other hand, the dark bursts should not form a new subgroup of long gamma-ray bursts themselves.Comment: published in Nuovo Ciment

    Chiral Properties of Pseudoscalar Mesons on a Quenched 20420^4 Lattice with Overlap Fermions

    Get PDF
    The chiral properties of the pseudoscalar mesons are studied numerically on a quenched 20420^4 lattice with the overlap fermion. We elucidate the role of the zero modes in the meson propagators, particularly that of the pseudoscalar meson. The non-perturbative renormalization constant ZAZ_A is determined from the axial Ward identity and is found to be almost independent of the quark mass for the range of quark masses we study; this implies that the O(a2)O(a^2) error is small. The pion decay constant, fπf_{\pi}, is calculated from which we determine the lattice spacing to be 0.148 fm. We look for quenched chiral log in the pseudoscalar decay constants and the pseudoscalar masses and we find clear evidence for its presence. The chiral log parameter δ\delta is determined to be in the range 0.15 -- 0.4 which is consistent with that predicted from quenched chiral perturbation theory.Comment: Version accepted for publication by PRD. A few minor typographical errors have been corrected. 24 pages, 11 figure

    Cosmological quintessence accretion onto primordial black holes : conditions for their growth to the supermassive scale

    Full text link
    In this work we revisit the growth of small primordial black holes (PBHs) immersed in a quintessential field and/or radiation to the supermassive black hole (SMBHs) scale. We show the difficulties of scenarios in which such huge growth is possible. For that purpose we evaluated analytical solutions of the differential equations (describing mass evolution) and point out the strong fine tuning for that conclusions. The timescale for growth in a model with a constant quintessence flux is calculated and we show that it is much bigger than the Hubble time.The fractional gain of the mass is further evaluated in other forms, including quintessence and/or radiation. We calculate the cosmological density Ω\Omega due to quintessence necessary to grow BHs to the supermassive range and show it to be much bigger than one. We also describe the set of complete equations analyzing the evolution of the BH+quintessence universe, showing some interesting effects such the quenching of the BH mass growth due to the evolution of the background energy. Additional constraints obtained by using the Holographic Bound are also described. The general equilibrium conditions for evaporating/accreting black holes evolving in a quintessence/radiation universe are discussed in the Appendix.Comment: 21 pp., 2 Figures, To appear in IJMP

    The Negativity of the Overlap-Based Topological Charge Density Correlator in Pure-Glue QCD and the Non-Integrable Nature of its Contact Part

    Full text link
    We calculate the lattice two-point function of topological charge density in pure-glue QCD using the discretization of the operator based on the overlap Dirac matrix. Utilizing data at three lattice spacings it is shown that the continuum limit of the correlator complies with the requirement of non-positivity at non-zero distances. For our choice of the overlap operator and the Iwasaki gauge action we find that the size of the positive core is ~2a (with a being the lattice spacing) sufficiently close to the continuum limit. This result confirms that the overlap-based topological charge density is a valid local operator over realistic backgrounds contributing to the QCD path integral, and is important for the consistency of recent results indicating the existence of a low-dimensional global brane-like topological structure in the QCD vacuum. We also confirm the divergent short-distance behavior of the correlator, and the non-integrable nature of the associated contact part.Comment: 13 pages, 5 figure

    Uncovering Low-Dimensional Topological Structure in the QCD Vacuum

    Full text link
    Recently, we have pointed out that sign-coherent 4-dimensional structures can not dominate topological charge fluctuations in QCD vacuum at all scales. Here we show that an enhanced lower-dimensional coherence is possible. In pure SU(3) lattice gauge theory we find that in a typical equilibrium configuration about 80% of space-time points are covered by two oppositely-charged connected structures built of elementary 3-dimensional coherent hypercubes. The hypercubes within the structure are connected through 2-dimensional common faces. We suggest that this coherence is a manifestation of a low-dimensional order present in the QCD vacuum. The use of a topological charge density associated with Ginsparg-Wilson fermions ("chiral smoothing") is crucial for observing this structure.Comment: 3 pages, 1 figure; Proceedings of the "Confinement V" Conference, Gargnano, Italy, Sep 10-14, 200

    Inherently Global Nature of Topological Charge Fluctuations in QCD

    Full text link
    We have recently presented evidence that in configurations dominating the regularized pure-glue QCD path integral, the topological charge density constructed from overlap Dirac operator organizes into an ordered space-time structure. It was pointed out that, among other properties, this structure exhibits two important features: it is low-dimensional and geometrically global, i.e. consisting of connected sign-coherent regions with local dimensions 1<= d < 4, and spreading over arbitrarily large space--time distances. Here we show that the space-time structure that is responsible for the origin of topological susceptibility indeed exhibits global behavior. In particular, we show numerically that topological fluctuations are not saturated by localized concentrations of most intense topological charge density. To the contrary, the susceptibility saturates only after the space-time regions with most intense fields are included, such that geometrically global structure is already formed. We demonstrate this result both at the fundamental level (full topological density) and at low energy (effective density). The drastic mismatch between the point of fluctuation saturation (~ 50% of space-time at low energy) and that of global structure formation (<4% of space-time at low energy) indicates that the ordered space-time structure in topological charge is inherently global and that topological charge fluctuations in QCD cannot be understood in terms of individual localized pieces. Description in terms of global brane-like objects should be sought instead.Comment: 10 pages, 3 figures; v2: typos corrected, minor modifications; v3: misprint in Eqs. (2,3) fixe
    • …
    corecore