2,418 research outputs found

    Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u

    Get PDF
    The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments

    Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs

    Full text link
    We discovered "stripe" patterns of trimerization-ferroelectric domains in hexagonal REMnO3 (RE=Ho, ---, Lu) crystals (grown below ferroelectric transition temperatures (Tc), reaching up to 1435 oC), in contrast with the vortex patterns in YMnO3. These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below Tc, but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross Tc even though the phase transition appears not to be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek Mechanism for trapped topological defects

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]−Μ/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th

    B0850+054: a new gravitational lens system from CLASS

    Get PDF
    We report the discovery of a new gravitational lens system from the CLASS survey. Radio observations with the VLA, the WSRT and MERLIN show that the radio source B0850+054 is comprised of two compact components with identical spectra, a separation of 0.7 arcsec and a flux density ratio of 6:1. VLBA observations at 5 GHz reveal structures that are consistent with the gravitational lens hypothesis. The brighter of the two images is resolved into a linear string of at least six sub-components whilst the weaker image is radially stretched towards the lens galaxy. UKIRT K-band imaging detects an 18.7 mag extended object, but the resolution of the observations is not sufficient to resolve the lensed images and the lens galaxy. Mass modelling has not been possible with the present data and the acquisition of high-resolution optical data is a priority for this system.Comment: 5 pages, 4 figures, accepted for publication in MNRA

    THE EFFECTS OF WEARING SPANDEX PANTS ON IMPACT FORCES AND MUSCLE ACTIVITY DURING DROP LANDING

    Get PDF
    INTRODUCTION: Nigg and Wakeling (2001) proposed that repetitive impact force are not an important form an injury perspective but are the reason for change in muscle activity to minimize soft tissue vibrations. Doan et al. (2003) found that wearing compressive shorts reduced muscle oscillation on landing and concluded that this may have benefit in terms of reduced tissue injury. If wearing spandex pants may tune the muscle to minimize vibration, there is specific adjustment made to reduce joint loading because subsequent changes in muscle activity would change joint stiffness. Since actual effect of wearing spandex pants on muscle activity and impact force are not established, the purpose of this study were to determine how spandex pants affect impact force and muscle activities in the lower extremity

    Electrodynamics of the vanadium oxides VO2 and V2O3

    Full text link
    The optical/infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant changes occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range is evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.Comment: 11 pages, 7 figure

    The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Full text link
    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its Ό\mu-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group \Diff(\S) with a space of scalar functions on §\S we show that both equations are locally well-posed. The main result of the paper is that the sectional curvature associated with the 2HS is constant and positive and that 2Ό\muHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in [J. Escher, M. Kohlmann, and J. Lenells, J. Geom. Phys. 61 (2011), 436-452].Comment: 19 page

    On the Gravitomagnetic Time Delay

    Get PDF
    We study the gravitational time delay in ray propagation due to rotating masses in the linear approximation of general relativity. Simple expressions are given for the gravitomagnetic time delay that occurs when rays of radiation cross a slowly rotating shell and propagate in the field of a distant rotating source. Moreover, we calculate the local gravitational time delay in the Goedel universe. The observational consequences of these results in the case of weak gravitational lensing are discussed.Comment: 15 pages, 1 figure, revised version submitted to Phys. Lett.

    Collective magnetism at multiferroic vortex domain walls

    Full text link
    Topological defects have been playgrounds for many emergent phenomena in complex matter such as superfluids, liquid crystals, and early universe. Recently, vortex-like topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal manganites. Numerous vortices are found to form an intriguing self-organized network. Thus, it is imperative to find out the magnetic nature of these vortices. Using cryogenic magnetic force microscopy, we discovered unprecedented alternating net moments at domain walls around vortices that can correlate over the entire vortex network in hexagonal ErMnO3 The collective nature of domain wall magnetism originates from the uncompensated Er3+ moments and the correlated organization of the vortex network. Furthermore, our proposed model indicates a fascinating phenomenon of field-controllable spin chirality. Our results demonstrate a new route to achieving magnetoelectric coupling at domain walls in single-phase multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure

    Clustering, Order, and Collapse in a Driven Granular Monolayer

    Full text link
    Steady state dynamics of clustering, long range order, and inelastic collapse are experimentally observed in vertically shaken granular monolayers. At large vibration amplitudes, particle correlations show only short range order like equilibrium 2D hard sphere gases. Lowering the amplitude "cools" the system, resulting in a dramatic increase in correlations leading either to clustering or an ordered state. Further cooling forms a collapse: a condensate of motionless balls co-existing with a less dense gas. Measured velocity distributions are non-Gaussian, showing nearly exponential tails.Comment: 9 pages of text in Revtex, 5 figures; references added, minor modifications Paper accepted to Phys Rev Letters. Tentatively scheduled for Nov. 9, 199
    • 

    corecore