848 research outputs found

    The wave function of a gravitating shell

    Full text link
    We have calculated a discrete spectrum and found an exact analytical solution in the form of Meixner polynomials for the wave function of a thin gravitating shell in the Reissner-Nordstrom geometry. We show that there is no extreme state in the quantum spectrum of the gravitating shell, as in the case of extreme black hole.Comment: 7 pages, 1 figur

    Super-Poincare' algebras, space-times and supergravities (I)

    Full text link
    A new formulation of theories of supergravity as theories satisfying a generalized Principle of General Covariance is given. It is a generalization of the superspace formulation of simple 4D-supergravity of Wess and Zumino and it is designed to obtain geometric descriptions for the supergravities that correspond to the super Poincare' algebras of Alekseevsky and Cortes' classification.Comment: 29 pages, v2: minor improvements at the end of Section 5.

    Evolution equation of quantum tomograms for a driven oscillator in the case of the general linear quantization

    Full text link
    The symlectic quantum tomography for the general linear quantization is introduced. Using the approach based upon the Wigner function techniques the evolution equation of quantum tomograms is derived for a parametric driven oscillator.Comment: 11 page

    Coherent States of SU(l,1)SU(l,1) groups

    Full text link
    This work can be considered as a continuation of our previous one (J.Phys., 26 (1993) 313), in which an explicit form of coherent states (CS) for all SU(N) groups was constructed by means of representations on polynomials. Here we extend that approach to any SU(l,1) group and construct explicitly corresponding CS. The CS are parametrized by dots of a coset space, which is, in that particular case, the open complex ball CDlCD^{l}. This space together with the projective space CPlCP^{l}, which parametrizes CS of the SU(l+1) group, exhausts all complex spaces of constant curvature. Thus, both sets of CS provide a possibility for an explicit analysis of the quantization problem on all the spaces of constant curvature.Comment: 22 pages, to be published in "Journal of Physics A

    Possible types of the evolution of vacuum shells around the de Sitter space

    Full text link
    All possible evolution scenarios of a thin vacuum shell surrounding the spherically symmetric de Sitter space have been determined and the corresponding global geometries have been constructed. Such configurations can appear at the final stage of the cosmological phase transition, when isolated regions (islands) of the old vacuum remain. The islands of the old vacuum are absorbed by the new vacuum, expand unlimitedly, or form black holes and wormholes depending on the sizes of the islands as well as on the density and velocity of the shells surrounding the islands.Comment: 3 pages, 1 figur

    Manifestly Supersymmetric RG Flows

    Full text link
    Renormalisation group (RG) equations in two-dimensional N=1 supersymmetric field theories with boundary are studied. It is explained how a manifestly N=1 supersymmetric scheme can be chosen, and within this scheme the RG equations are determined to next-to-leading order. We also use these results to revisit the question of how brane obstructions and lines of marginal stability appear from a world-sheet perspective.Comment: 22 pages; references added, minor change

    Dynamical algebra and Dirac quantum modes in Taub-NUT background

    Full text link
    The SO(4,1) gauge-invariant theory of the Dirac fermions in the external field of the Kaluza-Klein monopole is investigated. It is shown that the discrete quantum modes are governed by reducible representations of the o(4) dynamical algebra generated by the components of the angular momentum operator and those of the Runge-Lenz operator of the Dirac theory in Taub-NUT background. The consequence is that there exist central and axial discrete modes whose spinors have no separated variables.Comment: 17 pages, latex, no figures. Version to appear in Class.Quantum Gra

    A matrix solution to pentagon equation with anticommuting variables

    Full text link
    We construct a solution to pentagon equation with anticommuting variables living on two-dimensional faces of tetrahedra. In this solution, matrix coordinates are ascribed to tetrahedron vertices. As matrix multiplication is noncommutative, this provides a "more quantum" topological field theory than in our previous works

    Deformation Quantization of Geometric Quantum Mechanics

    Get PDF
    Second quantization of a classical nonrelativistic one-particle system as a deformation quantization of the Schrodinger spinless field is considered. Under the assumption that the phase space of the Schrodinger field is CC^{\infty}, both, the Weyl-Wigner-Moyal and Berezin deformation quantizations are discussed and compared. Then the geometric quantum mechanics is also quantized using the Berezin method under the assumption that the phase space is CPCP^{\infty} endowed with the Fubini-Study Kahlerian metric. Finally, the Wigner function for an arbitrary particle state and its evolution equation are obtained. As is shown this new "second quantization" leads to essentially different results than the former one. For instance, each state is an eigenstate of the total number particle operator and the corresponding eigenvalue is always 1{1 \over \hbar}.Comment: 27+1 pages, harvmac file, no figure
    corecore