966 research outputs found

    Low Mass Dimuons Produced in Relativistic Nuclear Collisions

    Full text link
    The NA60 experiment has measured low-mass muon pair production in In-In collisions at 158 A GeV with unprecedented precision. We show that this data is reproduced very well by a dynamical model with parameters scaled from fits to measurements of hadronic transverse mass spectra and Hanbury-Brown and Twiss correlations in Pb-Pb and Pb-Au collisions at the same energy. The data is consistent with in-medium properties of ρ\rho and ω\omega-mesons at finite temperature and density as deduced from empirical forward-scattering amplitudes. Inclusion of the vacuum decay of the ρ\rho-meson after freeze-out is necessary for an understanding of the mass and transverse momentum spectrum of dimuons with M \apprle 0.9 {\rm GeV}/c^2.Comment: 4 pages, 3 figures, updated hadronic analysi

    Properties of the phi meson at high temperatures and densities

    Full text link
    We calculate the spectral density of the phi meson in a hot bath of nucleons and pions using a general formalism relating self-energy to the forward scattering amplitude (FSA). In order to describe the low energy FSA, we use experimental data along with a background term. For the high energy FSA, a Regge parameterization is employed. We verify the resulting FSA using dispersion techniques. We find that the position of the peak of the spectral density is slightly shifted from its vacuum position and that its width is considerably increased. The width of the spectral density at a temperature of 150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200

    Radiative and Collisional Jet Energy Loss in the Quark-Gluon Plasma at RHIC

    Full text link
    We calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor RAAR_{AA} for neutral π0\pi^0 production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies ETE\gg T. These results are important for the understanding of jet quenching in Au+Au collisions at 200AGeV200 {\rm AGeV} at RHIC. Comparison with data is performed applying the energy loss calculation to a relativistic ideal (3+1)-dimensional hydrodynamic description of the thermalized medium formed at RHIC.Comment: 4 pages, 3 figure

    Extraction of coherent structures in a rotating turbulent flow experiment

    Full text link
    The discrete wavelet packet transform (DWPT) and discrete wavelet transform (DWT) are used to extract and study the dynamics of coherent structures in a turbulent rotating fluid. Three-dimensional (3D) turbulence is generated by strong pumping through tubes at the bottom of a rotating tank (48.4 cm high, 39.4 cm diameter). This flow evolves toward two-dimensional (2D) turbulence with increasing height in the tank. Particle Image Velocimetry (PIV) measurements on the quasi-2D flow reveal many long-lived coherent vortices with a wide range of sizes. The vorticity fields exhibit vortex birth, merger, scattering, and destruction. We separate the flow into a low-entropy ``coherent'' and a high-entropy ``incoherent'' component by thresholding the coefficients of the DWPT and DWT of the vorticity fields. Similar thresholdings using the Fourier transform and JPEG compression together with the Okubo-Weiss criterion are also tested for comparison. We find that the DWPT and DWT yield similar results and are much more efficient at representing the total flow than a Fourier-based method. Only about 3% of the large-amplitude coefficients of the DWPT and DWT are necessary to represent the coherent component and preserve the vorticity probability density function, transport properties, and spatial and temporal correlations. The remaining small amplitude coefficients represent the incoherent component, which has near Gaussian vorticity PDF, contains no coherent structures, rapidly loses correlation in time, and does not contribute significantly to the transport properties of the flow. This suggests that one can describe and simulate such turbulent flow using a relatively small number of wavelet or wavelet packet modes.Comment: experimental work aprox 17 pages, 11 figures, accepted to appear in PRE, last few figures appear at the end. clarifications, added references, fixed typo

    Exploring wind direction and SO2 concentration by circular-linear density estimation

    Full text link
    The study of environmental problems usually requires the description of variables with different nature and the assessment of relations between them. In this work, an algorithm for flexible estimation of the joint density for a circular-linear variable is proposed. The method is applied for exploring the relation between wind direction and SO2 concentration in a monitoring station close to a power plant located in Galicia (NW-Spain), in order to compare the effectiveness of precautionary measures for pollutants reduction in two different years.Comment: 17 pages, 7 figures, 2 table

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    Development of relativistic shock waves in viscous gluon matter

    Full text link
    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s\eta/s. We show that an η/s\eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
    corecore