44 research outputs found

    Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera

    Get PDF
    Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i) death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii) flies harboring mutant alleles of either adenylyl cyclase, Gsα, or the Gardos K(+) channel homolog SK are resistant to V. cholerae infection; and (iii) ingestion of a K(+) channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 μg of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera

    Phenotypic rescue by a bovine transgene in a Cu/Zn superoxide dismutase-null mutant of Drosophila melanogaster.

    No full text
    Null mutants for Cu/Zn superoxide dismutase (CuZnSOD) in Drosophila melanogaster are male sterile, have a greatly reduced adult life span, and are hypersensitive to paraquat. We have introduced a synthetic bovine CuZnSOD transgene under the transcriptional control of the D. melanogaster 5C actin promoter into a CuZnSOD-null mutant of D. melanogaster. This was carried out by P-element-mediated transformation of the Drosophila-bovine CuZnSOD transgene into a CuZnSOD+ recipient strain followed by genetic crossing of the transgene into a strain carrying the CuZnSOD-null mutation, cSODn108. The resulting transformants express bovine CuZnSOD exclusively to about 30% of normal Drosophila CuZnSOD levels. Expression of the Drosophila-bovine CuZnSOD transgene in the CuZnSOD-null mutant rescues male fertility and resistance to paraquat to apparently normal levels. However, adult life span is restored to only 30% of normal, and resistance to hyperoxia is 90% of that found in control flies. This striking differential restoration of pleiotropic phenotypes could be the result of a threshhold of CuZnSOD expression necessary for normal male fertility and resistance to the toxicity of paraquat or hyperoxia which is lower than the threshold required to sustain a normal adult life span. Alternatively, the differential rescue of fertility, resistance to active oxygen, and life span might indicate different cell-specific transcriptional requirements for these functions which are normally provided by the control elements of the native CuZnSOD gene but are only partly compensated for by the transcriptional control elements of the actin 5C promoter

    Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics

    No full text
    International audienceThe problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding envi- ronment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic- associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport

    The Genes Encoding Cholera Toxin Are Required for Lethal <i>V. cholerae</i> Infection of <i>Drosophila</i>

    No full text
    <p>Fractional survival of wild-type Oregon R flies (wtDm) fed LB alone (LB), wild-type <i>V. cholerae</i> (wtVc), or a <i>V. cholerae</i> Δ<i>ctxB</i> mutant (ctxB). Ten adult flies (five males and five females), 3–5 d following eclosion were used. Log-rank test analysis demonstrated a statistically significance difference in survival of wild-type <i>V. cholerae</i> infected flies and <i>V. cholerae</i> Δ<i>ctxB</i> mutant infected flies (<i>p</i> < 0.0001).</p

    Ingestion of <i>V. cholerae</i> Induces <i>Drosophila</i> Weight Loss

    No full text
    <p>Fraction of initial weight gained by wild-type flies (wt Dm) fed either LB alone (LB) or <i>V. cholerae</i> (wt Vc). Error bars represent the standard deviation based on three measurements.</p
    corecore