113 research outputs found

    Magnetic monopoles from gauge theory phase transitions

    Full text link
    Thermal fluctuations of the gauge field lead to monopole formation at the grand unified phase transition in the early Universe, even if the transition is merely a smooth crossover. The dependence of the produced monopole density on various parameters is qualitatively different from theories with global symmetries, and the monopoles have a positive correlation at short distances. The number density of monopoles may be suppressed if the grand unified symmetry is only restored for a short time by, for instance, nonthermal symmetry restoration after preheating.Comment: 5 pages, updated to match the version published in PRD (http://link.aps.org/abstract/PRD/v68/e021301) on 11 July 200

    Dynamics of tachyonic preheating after hybrid inflation

    Full text link
    We study the instability of a scalar field at the end of hybrid inflation, using both analytical techniques and numerical simulations. We improve previous studies by taking the inflaton field fully into account, and show that the range of unstable modes depends sensitively on the velocity of the inflaton field, and thereby on the Hubble rate, at the end of inflation. If topological defects are formed, their number density is determined by the shortest unstable wavelength. Finally, we show that the oscillations of the inflaton field amplify the inhomogeneities in the energy density, leading to local symmetry restoration and faster thermalization. We believe this explains why tachyonic preheating is so effective in transferring energy away from the inflaton zero mode.Comment: 12 pages, 10 figures, REVTeX. Minor changes, some references added. To appear in PR

    Counting defects with the two-point correlator

    Full text link
    We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z_2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form as a function of k/n, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).Comment: 11 pages, 7 figures

    Estimation of vortex density after superconducting film quench

    Full text link
    This paper addresses the problem of vortex formation during a rapid quench in a superconducting film. It builds on previous work showing that in a local gauge theory there are two distinct mechanisms of defect formation, based on fluctuations of the scalar and gauge fields, respectively. We show how vortex formation in a thin film differs from the fully two-dimensional case, on which most theoretical studies have focused. We discuss ways of testing theoretical predictions in superconductor experiments and analyse the results of recent experiments in this light.Comment: 7 pages, no figure

    Quantum kink and its excitations

    Full text link
    We show how detailed properties of a kink in quantum field theory can be extracted from field correlation functions. This makes it possible to study quantum kinks in a fully non-perturbative way using Monte Carlo simulations. We demonstrate this by calculating the kink mass as well as the spectrum and approximate wave functions of its excitations. This way of measuring the kink mass has clear advantages over the existing approaches based on creation and annihilation operators or the kink free energy. Our methods are straightforward to generalise to more realistic theories and other defect types.Comment: 21 pages, 11 figures, v2: typos corrected, references adde

    Reconstruction of field theory from excitation spectra of defects

    Full text link
    We show how to reconstruct a field theory from the spectrum of bound states on a topological defect. We apply our recipe to the case of kinks in 1+1 dimensions with one or two bound states. Our recipe successfully yields the sine-Gordon and λϕ4\lambda \phi^4 field theories when suitable bound state spectra are assumed. The recipe can also be used to globally reconstruct the inflaton potential of inflationary cosmology if the inflaton produces a topological defect. We discuss how defects can provide ``smoking gun'' evidence for a class of inflationary models.Comment: 10 pages, 4 figures. Included proof (Appendix B) that wall fluctuation potentials have supersymmetric form. Added reference

    Non-perturbative Debye mass in finite T QCD

    Get PDF
    Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.Comment: 4 pages, Late

    Enhanced baryon number violation due to cosmological defects with localized fermions along extra dimension

    Full text link
    We propose a new scenario of baryon number violation in models with extra dimensions. In the true vacuum, baryon number is almost conserved due to the localization mechanism of matter fields, which suppresses the interactions between quarks and leptons. We consider several types of cosmological defects in four-dimensional spacetime that shift the center of the localized matter fields, and show that the magnitudes of the baryon number violating interactions are well enhanced. Application to baryogenesis is also discussed.Comment: 12pages, latex2e, added references, to appear in PR

    On the Transverse-Traceless Projection in Lattice Simulations of Gravitational Wave Production

    Full text link
    It has recently been pointed out that the usual procedure employed in order to obtain the transverse-traceless (TT) part of metric perturbations in lattice simulations was inconsistent with the fact that those fields live in the lattice and not in the continuum. It was claimed that this could lead to a larger amplitude and a wrong shape for the gravitational wave (GW) spectra obtained in numerical simulations of (p)reheating. In order to address this issue, we have defined a consistent prescription in the lattice for extracting the TT part of the metric perturbations. We demonstrate explicitly that the GW spectra obtained with the old continuum-based TT projection only differ marginally in amplitude and shape with respect to the new lattice-based ones. We conclude that one can therefore trust the predictions appearing in the literature on the spectra of GW produced during (p)reheating and similar scenarios simulated on a lattice.Comment: 22 pages, 8 figures, Submitted to JCA

    Resonant Amplification of Electroweak Baryogenesis at Preheating

    Get PDF
    We explore viable scenarios for parametric resonant amplification of electroweak (EW) gauge fields and Chern-Simons number during preheating, leading to baryogenesis at the electroweak (EW) scale. In this class of scenarios time-dependent classical EW gauge fields, essentially spatially-homogeneous on the horizon scales, carry Chern-Simons number which can be amplified by parametric resonance up to magnitudes at which unsuppressed topological transitions in the Higgs sector become possible. Baryon number non-conservation associated with the gauge sector and the highly non-equilibrium nature of preheating allow for efficient baryogenesis. The requisite large CP violation can arise either from the time dependence of a slowly varying Higgs field (spontaneous baryogenesis), or from a resonant amplification of CP violation induced in the gauge sector through loops. We identify several CP violating operators in the Standard Model and its minimal extensions that can facilitate efficient baryogenesis at preheating, and show how to overcome would-be exponential suppression of baryogenesis associated with tunneling barriers.Comment: 51 pages, 8 figues; minor corrections; references adde
    • …
    corecore