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Non-perturbative Debye mass in finite T QCD
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Employing a non-perturbative gauge invariant definition of the Debye screening mass mD in the
effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading
O(g2) and to estimate the next-to-leading O(g3) corrections to mD in the high temperature region.
The O(g2) correction is large and modifies qualitatively the standard power-counting hierarchy
picture of correlation lengths in high temperature QCD.
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QCD matter, a spatially and temporally extended sys-
tem of matter described by the laws of Quantum Chro-
modynamics, goes at high temperatures into a quark-
gluon plasma phase, in which color is no more confined
and chiral symmetry is restored. An essential quantity,
describing coherent static interactions in the plasma, is
the inverse screening length of color electric fields, the
Debye mass mD. The Debye mass enters in many essen-
tial characteristics of static properties of the plasma. Its
numerical value is important for phenomenological dis-
cussions of formation of the quark-gluon plasma, for the
analysis of J/Ψ and Υ suppression in heavy ion colli-
sions, for the computation of parton equilibration rates,
etc. (see, e.g. [1]).

The definition and computation of the Debye mass for
abelian QED plasma is well understood [2]. The electro-
magnetic current jµ is a gauge-invariant quantity, and
the Debye mass can be extracted from the 2-point gauge
invariant correlation function of j0 in the plasma. There
are no massless charged particles in QED, which allows
an infrared-safe perturbative computation of the Debye
mass in powers of the electromagnetic coupling e. This
has been done to order e5 [3]. The situation in QCD is
much more complicated. First, the corresponding cur-
rent in QCD, ja

µ, is not a gauge invariant quantity. Sec-
ond, there are massless charged gluons which give rise to
infrared divergences and prevent the perturbative deter-
mination of the Debye mass beyond leading order.

A non-perturbative gauge invariant definition of the
Debye mass in vectorlike theories with zero chemical po-
tential was suggested in [4]. According to it, mD can
be defined from the large distance exponential fall-off of
correlators of gauge-invariant time-reflection odd opera-
tors O,

〈O(τ, ~x)O(τ, 0)〉 ∼ C|~x|β exp(−mD|~x|), (1)

where C and β are some constants. The simplest choice

for the operator O is F a
03F

a
12, and other examples can be

found in [4]. In principle, 4-dimensional lattice simula-
tions of hot QCD would thus allow a measurement of the
Debye mass at any temperature.

The aim of this letter is a non-perturbative determi-
nation of the high temperature limit of the Debye mass,
at T > a few × Tc. We will see that the effective 3d ap-
proach to high temperature gauge theories, developed in
[5–7] (for a review, see [8]) allows a simple and transpar-
ent gauge invariant definition of the Debye mass [4], while
3d lattice Monte Carlo simulations provide an economical
way to determine its value. The corrections to the leading
result we shall find are numerically large; thus many com-
putations in the phenomenology of quark-gluon plasma
in heavy ion collisions should be re-analysed.

The theory we shall study is QCD with Nf massless
quark flavours and with the gauge group SU(N) with
N = 2, 3. At high temperatures and zero chemical po-
tential the Debye mass can be expanded in a power series
in the QCD coupling constant g = g(µ) (the scale µ will
be specified later; the result for Nf = 0 is shown explic-
itly in eq. (5)):

mD = mLO
D +

Ng2T

4π
ln

mLO
D

g2T

+ cNg2T + dN,Nf
g3T + O(g4T ). (2)

The leading order (LO) perturbative result, mLO
D =

(N/3 + Nf/6)1/2gT , has been known for a long time [9].
The logarithmic part of the O(g2) correction can be ex-
tracted perturbatively [10], but cN and the higher order
corrections are non-perturbative. We are going to evalu-
ate numerically the coefficients cN and dN,Nf

.
Static Green’s functions for bosonic fields of high tem-

perature QCD at distances |x| ≫ T−1 we are interested
in can be determined by constructing an effective 3d
gauge theory, containing static magnetic gluons and the
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zero component of the 4d gauge field, A0 [5–7]. More-
over, a super-renormalizable 3d theory, defined by the
Lagrangian

Leff[Aa
i , Aa

0 ] =
1

4
F a

ijF
a
ij + Tr [Di, A0][Di, A0]

+ m2
3Tr A2

0 + λA(Tr A2
0)

2, (3)

gives the Green’s functions to a relative accuracy
O(g4) [6], which is sufficient for the accuracy of the ex-
pansion in eq. (2). The parameters of the effective theory
are related to the parameters of 4d QCD (Λ

MS
, N, Nf )

and the temperature as described in [11]. For brevity, we
give here the explicit expressions only for Nf = 0:

g2
3 = g2(4πe−γE−

1

22 T )T =
24π2T

11N ln(6.742T/Λ
MS

)
, (4)

m2
3 =

N

3
g2(4πe−γE−

5

22 T )T 2, (5)

λA =
6 + N

24π2
g4(4πe−γE−

7

44 T )T. (6)

Here g(µ) is the QCD coupling in the MS scheme and
all the effective theory couplings have been computed
including both the leading and the next-to-leading order
contributions. The couplings (4)-(6) are independent of
the gauge chosen for the perturbative computation. The
expansion parameter is g2/16π2 so that the result should
be accurate down to T ≈ a few × Λ

MS
.

The dynamics of the 3d effective theory is fully char-
acterised by the two dimensionless ratios

y =
m2

3

g4
3

, x =
λA

g2
3

, (7)

and by the dimensionful coupling g2
3 . The value of x is

essentially fixed by T ,

x =
6 + N

24π2
g2(4πe−γE−3/11T )

=
6 + N

11N

1

ln(5.371T/Λ
MS

)
, (8)

while y and x, corresponding to physical 4d finite T QCD
for Nf = 0, are related by:

y = ydr(x) =
2

9π2x
+

1

4π2
+ O(x), N = 2 (9)

=
3

8π2x
+

9

16π2
+ O(x), N = 3. (10)

We are now ready to give a gauge-invariant definition
of the Debye mass in the 3d language [4]. Physically, we
want a local operator which makes Aa

0 gauge invariant in
the 3d theory and contains Aa

0 singly. We can single out
this state by a symmetry consideration. Note that the
effective Lagrangian (3) has a discrete symmetry A0 ↔
−A0. Then the Debye mass can be defined as the mass of

the lightest 3d state which is odd under this symmetry.
The operator of lowest dimension of this type is

hi = ǫijkTr A0Fjk . (11)

Here the field Aa
0 has been made gauge invariant by dress-

ing it with a cloud of magnetic gluons.
At high T , one has g ≪ 1 and, according to eqs. (4),

(5), m3 ≫ g2
3. This is the “heavy quark limit” of the

3d theory, in which the mass mD of the singlet state is
dominated by the bare mass m3 of the scalar “quark”
Aa

0 . For dimensional reasons, the exact mass mD can in
this limit be expanded as

mD = m3 + aNg2
3 +

bNg4
3

m3

+ O(λA,
g2
3λA

m3

,
g6
3

m2
3

, . . .),

(12)

where aN and bN are constants, perhaps involving a log-
arithm of m3/g2

3. The terms neglected are of higher or-
der using the power counting in eqs. (4)-(6). Comparing
eqs. (2) and (12), one sees that

aN =
N

4π
ln

√

N/3 + Nf/6

g
+ cN ,

dN,Nf
=

bN
√

N/3 + Nf/6
. (13)

Here we used the fact that the scale dependence of the
non-perturbative terms in eq. (2) is at least of order
O(g4). Since the expansion (12) refers only to the 3d the-
ory, the constants aN and bN depend on N but clearly
not on Nf . Thus cN is Nf independent, while dN,Nf

depends on Nf only through mLO
D .

In terms of our dimensionless variables (7), eq. (12)
becomes

mD

g2
3

=
√

y +
N

4π
ln
√

y + cN +
bN√

y
+ . . . (14)

The mass mD can now be measured by putting the
effective 3d theory on the lattice [11] and by measuring
the exponential falloff of the correlator 〈h3(x3)h3(0)〉 ∼
exp(−mD|x3|), where h3(x3) is summed over the trans-
verse (x1, x2) plane. The correlation function is measured
both with zero and finite transverse momentum, and in
order to enhance the overlap with the asymptotic state
the measurements are performed with several levels of
recursive blocking of the operators. We select the block-
ing level and momentum sector which has the best signal
for the asymptotic mass separately for each Monte Carlo
run. Since the longest correlation length in each case is
less than 1/5 of the linear size of the lattice, we expect the
finite volume effects to be negligible in comparison with
the statistical errors. This was also explicitly checked by
performing simulations with different volumes in isolated
cases.
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FIG. 1. The gauge invariant Debye mass for SU(3), as a
function of x, or T/Λ

MS
through eq. (8). The scale of g on the

y-axis is fixed according to eq. (5). The dashed line marks the
leading order mLO

D , and the continuous line the 2-parameter
fit to eq. (12) with the parameters as in eq. (15).

The mass mD is defined in the whole y, x parameter
space. To have results which are relevant for 4d physics,
we perform the measurements along the 2-loop dimen-
sional reduction lines ydr(x), eqs. (9–10). To measure
the coefficients in eq. (14) one should use the part of this
curve corresponding to

√
y ≫ 1. The results for N = 3

are shown in Fig. 1, in units of 4d gT (= g2
3

√

3y/N in 3d
units). The Monte Carlo runs are performed with sev-
eral lattice spacings a, parametrised by βG ≡ 2N/(g2

3a).
For SU(3) βG varies by more than an order of magnitude
(although not at the same value of x), as shown in Fig. 1;
for SU(2), the measurements are done with βG = 20 and
32. The top scale of Fig. 1 shows the physical temper-
ature T/Λ

MS
along ydr(x) -line. Note that the highest

temperatures are larger than 10100 × Λ
MS

∼ 10100 × Tc.
At small x (large y), the fit to the function (12) is

very good, as indicated by the continuous line in Fig. 1.
In order to see in detail the sensitivity of the fit to the
parameters, in Fig. 2 we replot the SU(3) data (restricted
to x < 0.05) in terms of the quantity δm/g2

3 = mD/g2
3 −√

y − N
4π ln

√
y as a function of 1/

√
y. The intersection

of the curve with the vertical axis gives the value of cN

and the slope gives bN = dN,Nf

√

N/3 + Nf/6. One can
see that the linear fit is rather good even down to small
values of

√
y. The large non-zero value of the intercept

is very robustly determined. The slope bN is small and
has a relatively large error. Only the statistical error is
given, but the value of bN also depends on the range of

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
g = y
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2
(y

1/2
 + (3/8π) log y) 
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2
 [2.46(15) − y

−1/2
 0.49(15)] 

  

 

 

FIG. 2. The corrections of order O(g2
3) and O(g2

3/
√

y) to
the SU(3) screening mass mD in 3d units, corresponding to
eq. (14).

y−1/2 included.
The result of the fits are

SU(2): cN = 1.58 ± 0.20 bN = −0.03 ± 0.25
SU(3): cN = 2.46 ± 0.15 bN = −0.49 ± 0.15 .

(15)

The large number cN is related to non-perturbative 3d
effects, while the smaller dN,Nf

can be viewed as being
related to the choice of scale in mLO

D . For N = 2 we
can in practice only verify that d2,Nf

is close to zero.
Note that writing cN = Nc̃N , one has c̃N = 0.79 ± 0.10
(N = 2), 0.82 ± 0.05 (N = 3).

One can observe the following:

• The leading term is dominant only at extremely
large T . For SU(3), the leading term is larger
than the O(g2) correction for g < 1/2.46 or for
T/Λ

MS
>∼ exp(8π22.462/11)>∼1019. This implies

that the leading term only dominates when QCD
anyway merges into a unified theory.

• The four terms in eq. (14) fit the data over all the
range T >∼ 100Tc rather well, and there is no need
for further corrections.

• In the range Λ
MS

≈ Tc <∼T <∼ 100Tc, mD is rather
constant and ≈ 3.0 mLO

D for SU(2) and ≈ 3.3 mLO
D

for SU(3). It should be noted, though, that
in this regime mLO

D > T so that the hierarchy
m2

D/(2πT )2 ≪ 1 required for an accurate descrip-
tion of 4d physics through a 3d effective theory is
getting weaker.
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• The mass measured from the 〈A0A0〉-correlator in
the Landau gauge in 4d simulations for Nf = 0 has
also been observed to be clearly larger than the
leading term [12].

• If the mass ∼ gT of the Aa
0 field is “large”, larger

than the non-perturbative O(g2)T correction, the
Aa

0 field can be further perturbatively integrated
out and a simpler effective theory, containing only
Aa

i (and possible scalar fields) can be derived [5–7].
Our results imply that this can be accurately car-
ried out for QCD only at extremely high temper-
atures, T ≫ Tc. In the electroweak case the accu-
racy of the integration is sufficient even for T ∼ Tc

both since the leading term has a bigger coefficient
(mLO

D =
√

11/6gT ) than the Nf = 0 QCD consid-
ered here and since in the relevant T regime the
coupling constant g = g(mW ) ≈ 2/3 is smaller.

• The usual parametric “power counting” picture of
correlation lengths in high temperature QCD says
that the longest scale, related to the magnetic sec-
tor of the theory, is m−1

M ∼ (const × g2T )−1. A
shorter scale, ∼ (gT )−1, is associated with Debye
screening. Our results show that this picture can
be quantitatively correct only at extremely large
temperatures. Indeed, purely magnetic effects, as
measured by the 3d glueball (operator F a

ijF
a
ij) mass

(mG ≈ 2g2
3 for pure SU(2) [13,11]) tend to be nu-

merically large, so that mM ∼ mD in a very wide
range of temperatures (This gauge invariant result
is in contrast to the small magnetic gluon masses
measured in Landau gauge [12]). In this range the
longest length scale corresponds to a scalar 0++ 3d
“bound state” of two A0 quanta, associated with
the operator Aa

0Aa
0 (the power counting suggestion

that this state is roughly twice as heavy as mD

holds again only at extremely high T ).

Summarizing, we have carried out with lattice Monte
Carlo techniques a gauge independent measurement of
the Debye mass in finite T QCD. The measurement is
based on first deriving with 2-loop perturbative compu-
tations a 3d effective theory. The expansion parameter
is αs/π, so that the result is accurate down to T close to
Tc. The mass is obtained by measuring correlators of the
gauge invariant local operator Aa

0F
a
jk in the 3d theory.

The leading and next-to-leading corrections to mD were
determined and found to be large. In fact, for tempera-
tures from Tc up to T ∼ 1000Λ

MS
the non-perturbative

Debye screening mass is about a factor 3 larger than the
lowest order estimate.

It remains to be seen whether this modification of
the standard picture of high-temperature gauge theo-
ries has applications in the cosmological discussion of the
quark-hadron phase transition or in the phenomenology
of heavy ion collisions.

The simulations were carried out with a Cray C94 and
Cray T3E at the Finnish Center for Scientific Computing.
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