1,913 research outputs found

    Structure of penetrable-rod fluids: Exact properties and comparison between Monte Carlo simulations and two analytic theories

    Get PDF
    Bounded potentials are good models to represent the effective two-body interaction in some colloidal systems, such as dilute solutions of polymer chains in good solvents. The simplest bounded potential is that of penetrable spheres, which takes a positive finite value if the two spheres are overlapped, being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model is far from trivial, since interactions are not restricted to nearest neighbors and so its exact solution is not known. In this paper we first derive the exact correlation functions of penetrable-rod fluids to second order in density at any temperature, as well as in the high-temperature and zero-temperature limits at any density. Next, two simple analytic theories are constructed: a high-temperature approximation based on the exact asymptotic behavior in the limit TT\to\infty and a low-temperature approximation inspired by the exact result in the opposite limit T0T\to 0. Finally, we perform Monte Carlo simulations for a wide range of temperatures and densities to assess the validity of both theories. It is found that they complement each other quite well, exhibiting a good agreement with the simulation data within their respective domains of applicability and becoming practically equivalent on the borderline of those domains. A perspective on the extension of both approaches to the more realistic three-dimensional case is provided.Comment: 19 pages, 11 figures, 4 tables: v2: minor changes; published final versio

    Influence of the Particles Creation on the Flat and Negative Curved FLRW Universes

    Full text link
    We present a dynamical analysis of the (classical) spatially flat and negative curved Friedmann-Lameitre-Robertson-Walker (FLRW) universes evolving, (by assumption) close to the thermodynamic equilibrium, in presence of a particles creation process, described by means of a realiable phenomenological approach, based on the application to the comoving volume (i. e. spatial volume of unit comoving coordinates) of the theory for open thermodynamic systems. In particular we show how, since the particles creation phenomenon induces a negative pressure term, then the choice of a well-grounded ansatz for the time variation of the particles number, leads to a deep modification of the very early standard FLRW dynamics. More precisely for the considered FLRW models, we find (in addition to the limiting case of their standard behaviours) solutions corresponding to an early universe characterized respectively by an "eternal" inflationary-like birth and a spatial curvature dominated singularity. In both these cases the so-called horizon problem finds a natural solution.Comment: 14 pages, no figures, appeared in Class. Quantum Grav., 18, 193, 200

    Thermodynamic Field Theory with the Iso-Entropic Formalism

    Full text link
    A new formulation of the thermodynamic field theory (TFT) is presented. In this new version, one of the basic restriction in the old theory, namely a closed-form solution for the thermodynamic field strength, has been removed. In addition, the general covariance principle is replaced by Prigogine's thermodynamic covariance principle (TCP). The introduction of TCP required the application of an appropriate mathematical formalism, which has been referred to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine Universal Criterion of Evolution, via geometrical arguments, is proven. A new set of thermodynamic field equations, able to determine the nonlinear corrections to the linear ("Onsager") transport coefficients, is also derived. The geometry of the thermodynamic space is non-Riemannian tending to be Riemannian for hight values of the entropy production. In this limit, we obtain again the same thermodynamic field equations found by the old theory. Applications of the theory, such as transport in magnetically confined plasmas, materials submitted to temperature and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein.Comment: 35 page

    Exact Markovian kinetic equation for a quantum Brownian oscillator

    Full text link
    We derive an exact Markovian kinetic equation for an oscillator linearly coupled to a heat bath, describing quantum Brownian motion. Our work is based on the subdynamics formulation developed by Prigogine and collaborators. The space of distribution functions is decomposed into independent subspaces that remain invariant under Liouville dynamics. For integrable systems in Poincar\'e's sense the invariant subspaces follow the dynamics of uncoupled, renormalized particles. In contrast for non-integrable systems, the invariant subspaces follow a dynamics with broken-time symmetry, involving generalized functions. This result indicates that irreversibility and stochasticity are exact properties of dynamics in generalized function spaces. We comment on the relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.Comment: A few typos in the published version are correcte

    Phenomenological approach to the critical dynamics of the QCD phase transition revisited

    Full text link
    The phenomenological dynamics of the QCD critical phenomena is revisited. Recently, Son and Stephanov claimed that the dynamical universality class of the QCD phase transition belongs to model H. In their discussion, they employed a time-dependent Ginzburg-Landau equation for the net baryon number density, which is a conserved quantity. We derive the Langevin equation for the net baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they discussed the mode coupling induced through the {\it irreversible} current. Here, we show the {\it reversible} coupling can play a dominant role for describing the QCD critical dynamics and that the dynamical universality class does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in J.Phys.

    Inflationary Models Driven by Adiabatic Matter Creation

    Get PDF
    The flat inflationary dust universe with matter creation proposed by Prigogine and coworkers is generalized and its dynamical properties are reexamined. It is shown that the starting point of these models depends critically on a dimensionless parameter Σ\Sigma, closely related to the matter creation rate ψ\psi. For Σ\Sigma bigger or smaller than unity flat universes can emerge, respectively, either like a Big-Bang FRW singularity or as a Minkowski space-time at t=t=-\infty. The case Σ=1\Sigma=1 corresponds to a de Sitter-type solution, a fixed point in the phase diagram of the system, supported by the matter creation process. The curvature effects have also been investigated. The inflating de Sitter is a universal attractor for all expanding solutions regardless of the initial conditions as well as of the curvature parameter.Comment: 25 pages, 2 figures(available from the authors), uses LATE

    Consistent thermodynamics for spin echoes

    Full text link
    Spin-echo experiments are often said to constitute an instant of anti-thermodynamic behavior in a concrete physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment of the effect should take into account the correlations between the spin and translational degrees of freedom of the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporates both spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a faithful measure of entropy change.Comment: 15 pages, 2 figs. Changed figures, version to appear in PR

    Minimum entropy production principle from a dynamical fluctuation law

    Full text link
    The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distribution of occupation times for a class of Markov processes, we identify the entropy production as the large deviation rate function, up to leading order when expanding around a detailed balance dynamics. In that way, the minimum entropy production principle is recognized as a consequence of the structure of dynamical fluctuations, and its approximate character gets an explanation. We also discuss the subtlety emerging when applying the principle to systems whose degrees of freedom change sign under kinematical time-reversal.Comment: 17 page

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page

    Fluctuation theorem for the effusion of an ideal gas

    Full text link
    The probability distribution of the entropy production for the effusion of an ideal gas between two compartments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agreement with numerical data from hard disk molecular dynamics simulations.Comment: 11 pages, 10 figures, 2 table
    corecore