We present a dynamical analysis of the (classical) spatially flat and
negative curved Friedmann-Lameitre-Robertson-Walker (FLRW) universes evolving,
(by assumption) close to the thermodynamic equilibrium, in presence of a
particles creation process, described by means of a realiable phenomenological
approach, based on the application to the comoving volume (i. e. spatial volume
of unit comoving coordinates) of the theory for open thermodynamic systems. In
particular we show how, since the particles creation phenomenon induces a
negative pressure term, then the choice of a well-grounded ansatz for the time
variation of the particles number, leads to a deep modification of the very
early standard FLRW dynamics. More precisely for the considered FLRW models, we
find (in addition to the limiting case of their standard behaviours) solutions
corresponding to an early universe characterized respectively by an "eternal"
inflationary-like birth and a spatial curvature dominated singularity. In both
these cases the so-called horizon problem finds a natural solution.Comment: 14 pages, no figures, appeared in Class. Quantum Grav., 18, 193, 200