21 research outputs found

    Operational Forecasting of Wind Speed for an Self-Contained Power Assembly of a Traction Substation

    Get PDF
    Currently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required. Β© Belarusian National Technical University, 2023

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ингаляционного стСроида Π˜Π½Π³Π°ΠΊΠΎΡ€Ρ‚Π° Π² комплСксной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π° Π»Π΅Π³ΠΊΠΈΡ…

    Get PDF
    The problem of inhaled steroids administration in respiratory tuberculosis is being discussed whereas systemic prednisolone is a standard component of pathogenic therapy of active lung tuberculosis. This study shows research results for inhaled steroid Ingakort compared with oral prednisolone in lung tuberculosis patients with airway limitation syndrome. The results permit to approve that Ingakort in daily dose of 1000 meg is safe concerning exacerbation of the specific process for the patients studied. Such treatment is accompanied by improvement of bronchial passability and sensitivity to broncholytic drugs.Вопрос ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ингаляционных стСроидов ΠΏΡ€ΠΈ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π΅ ΠΎΡ€Π³Π°Π½ΠΎΠ² дыхания дискутируСтся, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ систСмный ΠΏΡ€ΠΈΠ΅ΠΌ ΠΏΡ€Π΅Π΄Π½ΠΈΠ·ΠΎΠ»ΠΎΠ½Π° являСтся стандартным ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ патогСнСтичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π°. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ изучСния ингаляционного стСроида Π˜Π½Π³Π°ΠΊΠΎΡ€Ρ‚Π° Π² сравнСнии с ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠΌ Π²Π½ΡƒΡ‚Ρ€ΡŒ ΠΏΡ€Π΅Π΄Π½ΠΈΠ·ΠΎΠ»ΠΎΠ½Π° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·ΠΎΠΌ Π»Π΅Π³ΠΊΠΈΡ… с бронхообструктивным синдромом. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π˜Π½Π³Π°ΠΊΠΎΡ€Ρ‚Π° Π² суточной Π΄ΠΎΠ·Π΅ 1000 ΠΌΠΊΠ³ Π² исслСдованной Π³Ρ€ΡƒΠΏΠΏΠ΅ бСзопасно Π² ΠΏΠ»Π°Π½Π΅ обострСния спСцифичСского процСсса, Π° Π³Π»Π°Π²Π½ΠΎΠ΅ – сопровоТдаСтся ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ΠΌ состояния Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ проходимости ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ ингаляционным бронхолитичСским срСдствам

    Topology Optimization of the Network with Renewable Energy Sources Generation Based on a Modified Adapted Genetic Algorithm

    Get PDF
    The article presents an adaptive genetic algorithm developed by the authors, which makes it possible to optimize the topology of a power network with distributed generation. The optimization was based on bioinspired methods. The objects of the study was a 15-node circuit of a power network with photovoltaic stations and a 14-node IEEE augmented circuit with distributed generation sources (three wind farms and two photovoltaic plants). The simulation of the modes of electric power systems was performed using the Pandapower library for the Python programming language, which is in the public domain. Three types of electric load of consumers were considered, reflecting the natures of electricity consumption in the nodes of real electric power systems, the results of numerical studies were presented. The proposed genetic algorithm used two different functions of interbreeding, the function of mutation, selection of the best individuals and mass mutation (complete population renewal). At the end of each iteration of the algorithm operation, statistical dependencies were derived that characterized its work: the best (minimal losses) and average adaptability in the population, a list of the best individuals throughout all iterations, etc. The verification was carried out in comparison with the results obtained by a complete search of possible radial configurations of the system, and it showed that the developed genetic algorithm had fast convergence, high accuracy and was able to work correctly with different configurations of electrical circuits, generation and load structures. The algorithm can be used in conjunction with renewable energy sources generation forecasting systems for the day ahead when planning the operating modes of power units in order to minimize the costs of covering electricity losses and improve the quality of electricity supplied. Β© 2022 Belarusian National Technical University. All rights reserved

    Improving of the Generation Accuracy Forecasting of Photovoltaic Plants Based on k-Means and k-Nearest Neighbors Algorithms

    Get PDF
    Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %. Β© 2023 Belarusian National Technical University. All rights reserved

    ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ скорости Π²Π΅Ρ‚Ρ€Π° для Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ энСргСтичСской установки тяговой ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ подстанции

    Get PDF
    Currently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required.Π’ настоящСС врСмя Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ пСрспСктивы создания Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… энСргСтичСских установок с использованиСм возобновляСмых источников энСргии, Π² Ρ‚ΠΎΠΌ числС энСргии Π²Π΅Ρ‚Ρ€Π°, ΠΈ систСм накоплСния энСргии Π½Π° Π±Π°Π·Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ энСргСтики. Для управлСния Ρ‚Π°ΠΊΠΎΠΉ систСмой накоплСния энСргии Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‚ возобновляСмых источников, Π² частности Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… энСргСтичСских установок. Π˜Ρ… Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° зависит ΠΎΡ‚ скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ энСргСтичСской установки, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ пропускной способности ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ участка ΠΌΠ΅ΠΆΠ΄Ρƒ станциями Яя ΠΈ Π˜ΠΆΠΌΠΎΡ€ΡΠΊΠ°Ρ (ΠšΠ΅ΠΌΠ΅Ρ€ΠΎΠ²ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ). ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ почасовыС Π΄Π°Π½Π½Ρ‹Π΅ скоростСй ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π²Π΅Ρ‚Ρ€Π° Π·Π° 15 Π»Π΅Ρ‚, построСна нСйросСтСвая модСль ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° компактная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° многослойного ΠΏΠ΅Ρ€Ρ†Π΅ΠΏΡ‚Ρ€ΠΎΠ½Π° для краткосрочного прогнозирования скорости ΠΈ направлСния Π²Π΅Ρ‚Ρ€Π° Π½Π° 1 ΠΈ 6 Ρ‡ Π²ΠΏΠ΅Ρ€Π΅Π΄. Разработанная модСль позволяСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ риски пСрСобучСния ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ точности прогнозирования ΠΈΠ·-Π·Π° измСнСния условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² исслСдовании устойчивости ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠ±ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний, ΠΊ долгосрочным измСнСниям, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅ возмоТностСй ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности прогнозирования Π·Π° счСт рСгулярного дообучСния ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° вновь ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ…. УстановлСн Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ влияния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΈ самоадаптации ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ прогнозирования ΠΈ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π΅Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅ Π² нСсколько Π»Π΅Ρ‚. Показано, Ρ‡Ρ‚ΠΎ для обСспСчСния высокой точности ΠΈ устойчивости нСйросСтСвой ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования скорости Π²Π΅Ρ‚Ρ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… мСтСорологичСских наблюдСний

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠΈ сСти с Π’Π˜Π­-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π½Π° основС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°

    Get PDF
    The article presents an adaptive genetic algorithm developed by the authors, which makes it possible to optimize the topology of a power network with distributed generation. The optimization was based on bioinspired methods. The objects of the study were a 15-node circuit of a power net-work with photovoltaic stations and a 14-node IEEE augmented circuit with distributed generation sources (three wind farms and two photovoltaic plants). The simulation of the modes of electric power systems was performed using the Pandapower library for the Python programming language, which is in the public domain. Three types of electric load of consumers were considered, reflecting the natures of electricity consumption in the nodes of real electric power systems, the results of numerical studies were presented. The proposed genetic algorithm used two different functions of interbreeding, the function of mutation, selection of the best individuals and mass mutation (complete population renewal). At the end of each iteration of the algorithm operation, statistical dependencies were de-rived that characterized its work: the best (minimal losses) and average adaptability in the population, a list of the best individuals throughout all iterations, etc. The verification was carried out in comparison with the results obtained by a complete search of possible radial configurations of the system, and it showed that the developed genetic algorithm had fast convergence, high accuracy and was able to work correctly with different configurations of electrical circuits, generation and load structures. The algorithm can be used in conjunction with renewable energy sources generation forecasting systems for the day ahead when planning the operating modes of power units in order to minimize the costs of covering electricity losses and improve the quality of electricity supplied.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡŽ элСктричСской сСти с распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π½Π° основС биоинспирированных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ исслСдования – 15-узловая схСма элСктричСской сСти с фотоэлСктричСскими станциями ΠΈ 14-узловая дополнСнная схСма IEEE с источниками распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ (Ρ‚Ρ€ΠΈ Π²Π΅Ρ‚Ρ€ΠΎΠ²Ρ‹Π΅ ΠΈ Π΄Π²Π΅ фотоэлСктричСскиС станции). ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² элСктроэнСргСтичСских систСм Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ с использованиСм находящСйся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ Pandapower для языка программирования Python. РассмотрСны Ρ‚Ρ€ΠΈ Ρ‚ΠΈΠΏΠ° элСктричСской Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ потрСблСния элСктроэнСргии Π² ΡƒΠ·Π»Π°Ρ… Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… элСктроэнСргСтичСских систСм, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнных исслСдований. Π’ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ гСнСтичСском Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ Π΄Π²Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ скрСщивания, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ, ΠΎΡ‚Π±ΠΎΡ€Π° Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΠΎΠ² ΠΈ массовой ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ (ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ обновлСния популяции). Π’ ΠΊΠΎΠ½Ρ†Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° выводятся статистичСскиС зависимости, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρƒ: Π»ΡƒΡ‡ΡˆΠ°Ρ (ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ) ΠΈ срСдняя ΠΏΡ€ΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² популяции, список Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΠΎΠ² Π½Π° протяТСнии всСх ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΉ ΠΈ Ρ‚. Π΄. ВСрификация ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² сравнСнии с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Π±ΠΎΡ€Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ систСмы, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ быстрой ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ, высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ способСн ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… конфигурациях схСм элСктричСских сСтСй, структурах Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ. Алгоритм ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ совмСстно с систСмами прогнозирования Π’Π˜Π­-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° сутки Π²ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΡΠ½Π΅Ρ€Π³ΠΎΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ с Ρ†Π΅Π»ΡŒΡŽ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠ΅ΠΊ Π½Π° ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ элСктроэнСргии ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства отпускаСмой элСктроэнСргии

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСских станций Π½Π° основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² k-срСдних ΠΈ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй

    Get PDF
    Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %.ВозобновляСмыС источники энСргии Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ срСдство сниТСния ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ слСда Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСского комплСкса, ΠΏΡ€ΠΈ этом стохастичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ослоТняСт ΠΈΡ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с элСктроэнСргСтичСскими систСмами. Π­Ρ‚Π° сущСствСнная Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡΡ‚ΡŒ обусловливаСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ элСктричСских станций, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… ΡΠ½Π΅Ρ€Π³ΠΈΡŽ солнца, Π²Π΅Ρ‚Ρ€Π° ΠΈ Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ². НаиболСС Π²Π°ΠΆΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, являСтся Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· мСтСорологичСских условий ΠΊΠ°ΠΊ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Π²Π»ΠΈΡΡŽΡ‰Π΅Π³ΠΎ Π½Π° Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ элСктроэнСргии. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΈ исслСдован ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΠ΄ мСтСорологичСскиС условия Ρ€Π°Π±ΠΎΡ‚Ρ‹ фотоэлСктричСских станций Π½Π° Π±Π°Π·Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния. ΠŸΡ€ΠΈΒ ΡΡ‚ΠΎΠΌ Π²Π½Π°Ρ‡Π°Π»Π΅ выполняСтся ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π· учитСля ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ k-срСдних для формирования кластСров. Для этой Π·Π°Π΄Π°Ρ‡ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈ исслСдовано использованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° пониТСния размСрности пространства ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ точности кластСризации. Π—Π°Ρ‚Π΅ΠΌ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ кластСра построСна своя модСль машинного обучСния для формирования ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΈΒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй для отнСсСния Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… условий Π½Π° этапС эксплуатации ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· сформированных кластСров. ИсслСдованиС Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° почасовых мСтСорологичСских Π΄Π°Π½Π½Ρ‹Ρ… Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1985 ΠΏΠΎ 2021 Π³. Одной ΠΈΠ· особСнностСй этого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° являСтся кластСризация мСтСоусловий Π½Π° часовых, Π° Π½Π΅ суточных ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ…. Π’Β Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ срСдний ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ошибки прогнозирования сущСствСнно сниТаСтся Π² зависимости ΠΎΡ‚Β ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования. Для Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ошибка прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСской станции Π½Π° час Π²ΠΏΠ΅Ρ€Π΅Π΄ составила 9Β %
    corecore