248 research outputs found

    Towards a Mg lattice clock: Observation of the 1S0−^1S_{0}-3P0^3P_{0} transition and determination of the magic wavelength

    Full text link
    We optically excite the electronic state 3s3p 3P03s3p~^3P_{0} in 24^{24}Mg atoms, laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift and the transition frequency to be 468.463(207) \,nm, -206.6(2.0) \,MHz/T2^2 and 655 058 646 691(101) \,kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also developed a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift and discuss a clock based on bosonic magnesium.Comment: 5 pages, 3 figure

    Relativistic coupled-cluster calculations of 20^{20}Ne, 40^{40}Ar, 84^{84}Kr and 129^{129}Xe: correlation energies and dipole polarizabilities

    Full text link
    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.Comment: 10 figures, 6 tables, submitted to PR

    High-precision calculations of In I and Sn II atomic properties

    Full text link
    We use all-order relativistic many-body perturbation theory to study 5s^2 nl configurations of In I and Sn II. Energies, E1-amplitudes, and hyperfine constants are calculated using all-order method, which accounts for single and double excitations of the Dirac-Fock wave functions.Comment: 10 pages, accepted to PRA; v2: Introduction changed, references adde

    Electric dipole moment enhancement factor of thallium

    Full text link
    The goal of this work is to resolve the present controversy in the value of the EDM enhancement factor of Tl. We have carried out several calculations by different high-precision methods, studied previously omitted corrections, as well as tested our methodology on other parity conserving quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde

    Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    Full text link
    To address the shortage of experimental data for electron spectra of triply-ionized rare earth elements we have calculated energy levels and lifetimes of 4f{n+1} and 4f{n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.Comment: 4 pages 1 tabl
    • …
    corecore