181 research outputs found

    First-order scaling near a second-order phase transition: Tricritical polymer collapse

    Full text link
    The coil-globule transition of an isolated polymer has been well established to be a second-order phase transition described by a standard tricritical O(0) field theory. We provide compelling evidence from Monte Carlo simulations in four dimensions, where mean-field theory should apply, that the approach to this (tri)critical point is dominated by the build-up of first-order-like singularities masking the second-order nature of the coil-globule transition: the distribution of the internal energy having two clear peaks that become more distinct and sharp as the tricritical point is approached. However, the distance between the peaks slowly decays to zero. The evidence shows that the position of this (pseudo) first-order transition is shifted by an amount from the tricritical point that is asymptotically much larger than the width of the transition region. We suggest an explanation for the apparently contradictory scaling predictions in the literature.Comment: 4 pages, 2 figures included in tex

    A self-interacting partially directed walk subject to a force

    Full text link
    We consider a directed walk model of a homopolymer (in two dimensions) which is self-interacting and can undergo a collapse transition, subject to an applied tensile force. We review and interpret all the results already in the literature concerning the case where this force is in the preferred direction of the walk. We consider the force extension curves at different temperatures as well as the critical-force temperature curve. We demonstrate that this model can be analysed rigorously for all key quantities of interest even when there may not be explicit expressions for these quantities available. We show which of the techniques available can be extended to the full model, where the force has components in the preferred direction and the direction perpendicular to this. Whilst the solution of the generating function is available, its analysis is far more complicated and not all the rigorous techniques are available. However, many results can be extracted including the location of the critical point which gives the general critical-force temperature curve. Lastly, we generalise the model to a three-dimensional analogue and show that several key properties can be analysed if the force is restricted to the plane of preferred directions.Comment: 35 pages, 14 figure

    Four-dimensional polymer collapse II: Pseudo-First-Order Transition in Interacting Self-avoiding Walks

    Full text link
    In earlier work we provided the first evidence that the collapse, or coil-globule, transition of an isolated polymer in solution can be seen in a four-dimensional model. Here we investigate, via Monte Carlo simulations, the canonical lattice model of polymer collapse, namely interacting self-avoiding walks, to show that it not only has a distinct collapse transition at finite temperature but that for any finite polymer length this collapse has many characteristics of a rounded first-order phase transition. However, we also show that there exists a `θ\theta-point' where the polymer behaves in a simple Gaussian manner (which is a critical state), to which these finite-size transition temperatures approach as the polymer length is increased. The resolution of these seemingly incompatible conclusions involves the argument that the first-order-like rounded transition is scaled away in the thermodynamic limit to leave a mean-field second-order transition. Essentially this happens because the finite-size \emph{shift} of the transition is asymptotically much larger than the \emph{width} of the pseudo-transition and the latent heat decays to zero (algebraically) with polymer length. This scenario can be inferred from the application of the theory of Lifshitz, Grosberg and Khokhlov (based upon the framework of Lifshitz) to four dimensions: the conclusions of which were written down some time ago by Khokhlov. In fact it is precisely above the upper critical dimension, which is 3 for this problem, that the theory of Lifshitz may be quantitatively applicable to polymer collapse.Comment: 30 pages, 14 figures included in tex

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Scaling of the atmosphere of self-avoiding walks

    Full text link
    The number of free sites next to the end of a self-avoiding walk is known as the atmosphere. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor

    IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater - Revised and updated. Part 8. C9 hydrocarbons with water

    Get PDF
    The mutual solubility and related liquid-liquid equilibria of C9 hydrocarbons with water are exhaustively and critically reviewed. Reports of the experimental determination of solubility in 18 chemically distinct binary systems that appeared in the primary literature prior to the end of 2002 are compiled. For 8 systems, sufficient data are available to allow critical evaluation. All data are expressed as mass percent and mole fraction, as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Date Series, a new method based on the evaluation of the all experimental data for a given homologous series of aliphatic and aromatic hydrocarbons was used

    IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 5. C7 hydrocarbons with water and heavy water

    Get PDF
    The mutual solubility and related liquid-liquid equilibria of C7 hydrocarbons with water and heavy water are exhaustively and critically reviewed. Reports of experimental determination of solubility in 23 chemically distinct binary systems that appeared in the primary literature prior to end of 2002 are compiled. For 9 systems sufficient data are available to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, a new method based on the evaluation of the all experimental data for a given homologous series of aliphatic and aromatic hydrocarbons was used

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Pulling self-interacting polymers in two-dimensions

    Full text link
    We investigate a two-dimensional problem of an isolated self-interacting end-grafted polymer, pulled by one end. In the thermodynamic limit, we find that the model has only two different phases, namely a collapsed phase and a stretched phase. We show that the phase diagram obtained by Kumar {\it at al.\} [Phys. Rev. Lett. {\bf 98}, 128101 (2007)] for small systems, where differences between various statistical ensembles play an important role, differ from the phase diagram obtained here in the thermodynamic limit.Comment: 20 pages, 22 figure
    corecore