176 research outputs found

    Radiation effects in a muon collider ring and dipole magnet protection

    Full text link
    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 1034 cm-2s-1. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Conceptual designs of dipole magnet for muon collider ring

    Full text link
    Conceptual designs of a superconducting dipole magnet for a Storage Ring of a Muon Collider with a 1.5 TeV center of mass (c.o.m.) energy and an average luminosity of 10 34 cm-2s-1 are presented. In contrast to proton machines, the dipoles for the Muon Collider should be able to handle ~0.5 kW/m of dynamic heat load from the muon beam decays. The magnets are based on Nb3Sn superconductor and designed to provide an operating field of 10 T in the 20-mm aperture with the critical current margin required for reliable machine operation. The magnet cross-sections were optimized to achieve the best possible field quality in the aperture occupied by beams. The developed mechanical structures provide adequate coil prestress and support at the maximum level of Lorentz forces in the coil. Magnet parameters are reported and compared with the requirements.Comment: 4 pp. Applied Superconductivity Conference (ASC 2010), 1-6 Aug 2010: Washington, D.

    Experimental results and analysis from the 11 T Nb3Sn DS dipole

    Full text link
    FNAL and CERN are developing a 5.5-m-long twin-aperture Nb3Sn dipole suitable for installation in the LHC. A 2-m-long single-aperture demonstrator dipole with 60 mm bore, a nominal field of 11 T at the LHC nominal current of 11.85 kA and 20% margin has been developed and tested. This paper presents the results of quench protection analysis and protection heater study for the Nb3Sn demonstrator dipole. Extrapolations of the results for long magnet and operation in LHC are also presented.Comment: 10 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    ARE ALL PRODUCTS OF SPERMATOGENESIS REGULARLY FUNCTIONAL?

    Full text link

    Design and Assembly of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management in Dipole Mirror Configuration

    Full text link
    The stress-management cos-theta (SMCT) coil is a new concept which has been proposed and is being developed at Fermilab in the framework of US Magnet Development Program (US-MDP) for high-field and/or large-aperture accelerator magnets based on low-temperature and high-temperature superconductors. The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, thus, the excessively large strains and stresses in the coil. A large-aperture Nb3Sn SMCT dipole coil has been developed and fabricated at Fermilab to demonstrate and test the SMCT concept including coil design, fabrication technology and performance. The first SMCT coil has been assembled with 60-mm aperture Nb3Sn coil inside a dipole mirror configuration and will be tested separately and in series with the insert coil. This paper summarizes the large-aperture SMCT coil design and parameters and reports the coil fabrication steps and its assembly in dipole mirror configuration

    Magnetic and Mechanical Analysis of the HQ Model Quadrupole Designs for LARP

    Full text link
    corecore