49 research outputs found

    Damping of quasi-2D internal wave attractors by rigid-wall friction

    Full text link
    The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008)

    Exact solution for the simplest binary system of Kerr black holes

    Full text link
    The full metric describing two counter-rotating identical Kerr black holes separated by a massless strut is derived in the explicit analytical form. It contains three arbitrary parameters which are the Komar mass M, Komar angular momentum per unit mass a of one of the black holes (the other has the same mass and equal but opposite angular momentum) and the coordinate distance R between the centers of the horizons. In the limit of extreme black holes, the metric becomes a special member of the Kinnersly-Chitre five-parameter family of vacuum solutions generalizing the Tomimatsu-Sato delta=2 spacetime, and we present the complete set of metrical fields defining this limit.Comment: 9 pages, 1 figure, typos corrected, a footnote on p.6 extende

    Boundary layer on the surface of a neutron star

    Full text link
    In an attempt to model the accretion onto a neutron star in low-mass X-ray binaries, we present two-dimensional hydrodynamical models of the gas flow in close vicinity of the stellar surface. First we consider a gas pressure dominated case, assuming that the star is non-rotating. For the stellar mass we take M_{\rm star}=1.4 \times 10^{-2} \msun and for the gas temperature T=5×106T=5 \times 10^6 K. Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T≃108T\simeq 10^8 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.Comment: 7 pages, 7 figure

    Nodal and Periastron Precession of Inclined Orbits in the Field of a Rapidly Rotating Neutron Star

    Get PDF
    We derive a formula for the nodal precession frequency and the Keplerian period of a particle at an arbitrarily inclined orbit (with a minimum latitudinal angle reached at the orbit) in the post-Newtonian approximation in the external field of an oblate rotating neutron star (NS). We also derive formulas for the nodal precession and periastron rotation frequencies of slightly inclined low-eccentricity orbits in the field of a rapidly rotating NS in the form of asymptotic expansions whose first terms are given by the Okazaki--Kato formulas. The NS gravitational field is described by the exact solution of the Einstein equation that includes the NS quadrupole moment induced by rapid rotation. Convenient asymptotic formulas are given for the metric coefficients of the corresponding space-time in the form of Kerr metric perturbations in Boyer--Lindquist coordinates.Comment: 12 page

    The rotation curve and mass-distribution in highly flattened galaxies

    Get PDF
    A new method is developed which permits the reconstruction of the surface-density distribution in the galactic disk of finite radius from an arbitrary smooth distribution of the angular velocity via two simple quadratures. The existence of upper limits for disk's mass and radius during the analytic continuation of rotation curves into the hidden (non-radiating) part of the disk is demonstrated.Comment: 13 pages, 2 figure

    Integrability of generalized (matrix) Ernst equations in string theory

    Full text link
    The integrability structures of the matrix generalizations of the Ernst equation for Hermitian or complex symmetric d×dd\times d-matrix Ernst potentials are elucidated. These equations arise in the string theory as the equations of motion for a truncated bosonic parts of the low-energy effective action respectively for a dilaton and d×dd\times d - matrix of moduli fields or for a string gravity model with a scalar (dilaton) field, U(1) gauge vector field and an antisymmetric 3-form field, all depending on two space-time coordinates only. We construct the corresponding spectral problems based on the overdetermined 2d×2d2d\times 2d-linear systems with a spectral parameter and the universal (i.e. solution independent) structures of the canonical Jordan forms of their matrix coefficients. The additionally imposed conditions of existence for each of these systems of two matrix integrals with appropriate symmetries provide a specific (coset) structures of the related matrix variables. An equivalence of these spectral problems to the original field equations is proved and some approach for construction of multiparametric families of their solutions is envisaged.Comment: 15 pages, no figures, LaTeX; based on the talk given at the Workshop ``Nonlinear Physics: Theory and Experiment. III'', 24 June - 3 July 2004, Gallipoli (Lecce), Italy. Minor typos, language and references corrections. To be published in the proceedings in Theor. Math. Phy

    How can exact and approximate solutions of Einstein's field equations be compared?

    Full text link
    The problem of comparison of the stationary axisymmetric vacuum solutions obtained within the framework of exact and approximate approaches for the description of the same general relativistic systems is considered. We suggest two ways of carrying out such comparison: (i) through the calculation of the Ernst complex potential associated with the approximate solution whose form on the symmetry axis is subsequently used for the identification of the exact solution possessing the same multipole structure, and (ii) the generation of approximate solutions from exact ones by expanding the latter in series of powers of a small parameter. The central result of our paper is the derivation of the correct approximate analogues of the double-Kerr solution possessing the physically meaningful equilibrium configurations. We also show that the interpretation of an approximate solution originally attributed to it on the basis of some general physical suppositions may not coincide with its true nature established with the aid of a more accurate technique.Comment: 32 pages, 5 figure

    Nodal and Periastron Precession of Inclined Orbits in the Field of a Rotating Black Hole

    Get PDF
    The inclination of low-eccentricity orbits is shown to significantly affect the orbital parameters, in particular, the Keplerian, nodal precession, and periastron rotation frequencies, which are interpreted in terms of observable quantities. For the nodal precession and periastron rotation frequencies of low-eccentricity orbits in a Kerr field, we derive a Taylor expansion in terms of the Kerr parameter at arbitrary orbital inclinations to the black-hole spin axis and at arbitrary radial coordinates. The particle radius, energy, and angular momentum in the marginally stable circular orbits are calculated as functions of the Kerr parameter jj and parameter ss in the form of Taylor expansions in terms of jj to within O[j6]O[j^6]. By analyzing our numerical results, we give compact approximation formulas for the nodal precession frequency of the marginally stable circular orbits at various ss in the entire range of variation of Kerr parameter.Comment: 18 pages, to be published in Astronomy Letters, 2001, vol 27 (12

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction
    corecore