111 research outputs found
Production of {\pi}+ and K+ mesons in argon-nucleus interactions at 3.2 AGeV
First physics results of the BM@N experiment at the Nuclotron/NICA complex
are presented on {\pi}+ and K+ meson production in interactions of an argon
beam with fixed targets of C, Al, Cu, Sn and Pb at 3.2 AGeV. Transverse
momentum distributions, rapidity spectra and multiplicities of {\pi}+ and K+
mesons are measured. The results are compared with predictions of theoretical
models and with other measurements at lower energies.Comment: 29 pages, 20 figure
Prospects in Analytical Atomic Spectrometry
Tendencies in five main branches of atomic spectrometry (absorption,
emission, mass, fluorescence and ionization spectrometry) are considered. The
first three techniques are the most widespread and universal, with the best
sensitivity attributed to atomic mass spectrometry. In the direct elemental
analysis of solid samples, the leading roles are now conquered by laser-induced
breakdown and laser ablation mass spectrometry, and the related techniques with
transfer of the laser ablation products into inductively-coupled plasma.
Advances in design of diode lasers and optical parametric oscillators promote
developments in fluorescence and ionization spectrometry and also in absorption
techniques where uses of optical cavities for increased effective absorption
pathlength are expected to expand. Prospects for analytical instrumentation are
seen in higher productivity, portability, miniaturization, incorporation of
advanced software, automated sample preparation and transition to the
multifunctional modular architecture. Steady progress and growth in
applications of plasma- and laser-based methods are observed. An interest
towards the absolute (standardless) analysis has revived, particularly in the
emission spectrometry.Comment: Proofread copy with an added full reference list of 279 citations. A
pdf version of the final published review may be requested from Alexander
Bol'shakov <[email protected]
The BM@N spectrometer at the NICA accelerator complex
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and
taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N
experiment is to study interactions of relativistic heavy-ion beams with fixed
targets. We present a technical description of the BM@N spectrometer including
all its subsystems.Comment: 34 pages, 47 figures, 6 table
meson production in inelastic p+p interactions at 40 and 80 beam momenta measured by NA61/SHINE at the CERN SPS
Measurements of K∗(892)0 resonance production via its K+π− decay mode in inelastic p+p collisions at beam momenta 40 and 80 GeV /c (sNN−−−−√=8.8 and 12.3 GeV ) are presented. The data were recorded by the NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The template method was used to extract the K∗(892)0 signal. Transverse momentum and rapidity spectra were obtained. The mean multiplicities of K∗(892)0 mesons were found to be (35.1±1.3(stat)±3.6(sys))⋅10−3 at 40 GeV /c and (58.3±1.9(stat)±4.9(sys))⋅10−3 at 80 GeV /c. The NA61/SHINE results are compared with the Epos1.99 and Hadron Resonance Gas models as well as with world data. The transverse mass spectra of K∗(892)0 mesons and other particles previously reported by NA61/SHINE were fitted within the Blast-Wave model. The transverse flow velocities are close to 0.1–0.2 of the speed of light and are significantly smaller than the ones determined in heavy nucleus-nucleus interactions at the same beam momenta
Measurement of Hadron Production in -C Interactions at 158 and 350 GeV/c with NA61/SHINE at the CERN SPS
We present a measurement of the momentum spectra of , K,
p, , and K produced in interactions of
negatively charged pions with carbon nuclei at beam momenta of 158 and 350
GeV/c. The total production cross sections are measured as well. The data were
collected with the large-acceptance spectrometer of the fixed target experiment
NA61/SHINE at the CERN SPS. The obtained double-differential - spectra
provide a unique reference data set with unprecedented precision and large
phase-space coverage to tune models used for the simulation of particle
production in extensive air showers in which pions are the most numerous
projectiles
meson production in inelastic p+p interactions at 31, 40 and 80 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS
Measurements of meson production via its decay mode
in inelastic interactions at incident projectile momenta of 31,
40 and 80 GeV/ ( and GeV, respectively) are
presented. The data were recorded by the NA61/SHINE spectrometer at the CERN
Super Proton Synchrotron. Double-differential distributions were obtained in
transverse momentum and rapidity. The mean multiplicities of mesons
were determined to be at
31 GeV/, at 40
GeV/ and at 80
GeV/. The results on production are compared with model
calculations (Epos1.99, SMASH 2.0 and PHSD) as well as with published data from
other experiments.Comment: arXiv admin note: substantial text overlap with arXiv:2106.0753
K meson production in inelastic p+p interactions at 158 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS
The production of K mesons in inelastic p+p collisions at beam momentum 158 GeV / (=17.3 GeV ) was measured with the NA61/SHINE spectrometer at the CERN Super Proton Synchrotron. Double-differential distributions were obtained in transverse momentum and rapidity. The mean multiplicity of K was determined to be 0.162±0.001(.)±0.011(.). The results on K production are compared with model predictions (EPOS 1.99, SMASH 2.0, PHSD and UrQMD 3.4 models) as well as with published world data
Measurements of K, Λ , and production in 120 GeV / c p + C interactions
This paper presents multiplicity measurements of K0S, Λ, and ¯Λ produced in 120 GeV/c proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured π+, π−, p and ¯p multiplicities in the 120 GeV/c proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to reweight neutral hadron production in neutrino beam Monte Carlo simulations
Measurements of , , and spectra in Ar+Sc collisions at 13 to 150 GeV/
The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the
onset of deconfinement in strongly interacting matter through a beam energy
scan of particle production in collisions of nuclei of varied sizes. This paper
presents results on inclusive double-differential spectra, transverse momentum
and rapidity distributions and mean multiplicities of , ,
and produced in Ar+Sc collisions at beam momenta of
13, 19, 30, 40, 75 and 150 GeV/. The analysis uses the 10%
most central collisions, where the observed forward energy defines centrality.
The energy dependence of the / ratios as well as of inverse
slope parameters of the transverse mass distributions are placed in
between those found in inelastic + and central Pb+Pb collisions. The
results obtained here establish a system-size dependence of hadron production
properties that so far cannot be explained either within statistical (SMES,
HRG) or dynamical (EPOS, UrQMD, PHSD, SMASH) models
- …