93 research outputs found

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure

    Bulk and Boundary Critical Behavior at Lifshitz Points

    Full text link
    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard Ï•4\phi^4 model. Analyzing these models systematically via modern field-theoretic renormalization group methods has been a long-standing challenge ever since their introduction in the middle of the 1970s. We survey the recent progress made in this direction, discussing results obtained via dimensionality expansions, how they compare with Monte Carlo results, and open problems. These advances opened the way towards systematic studies of boundary critical behavior at mm-axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the mm modulation axes or parallel to all of them. We show that the semi-infinite field theories representing the corresponding surface universality classes in these two cases of perpendicular and parallel surface orientation differ crucially in their Hamiltonian's boundary terms and the implied boundary conditions, and explain recent results along with our current understanding of this matter.Comment: Invited contribution to STATPHYS 22, to be published in the Proceedings of the 22nd International Conference on Statistical Physics (STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP), 4--9 July 2004, Bangalore, Indi

    Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials

    Get PDF
    Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic `blue phase' host, particles should template into colloidal crystals with potential uses in photonics, metamaterials, and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol, but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.Comment: Manuscript with 3 figures plus supporting text and figure

    Ferroelectric Liquid-Crystals - from the Plane-Wave to the Multisoliton Limit

    Get PDF
    Contains fulltext : 27864.pdf (publisher's version ) (Open Access

    Slow mode of the smectic-A-smectic-C-alpha(*) phase transition

    Get PDF
    Contains fulltext : 92658.pdf (publisher's version ) (Open Access

    Order-Parameter Dynamics near the Lifshitz Point in a Ferroelectric Liquid-Crystal

    Get PDF
    Contains fulltext : 27865.pdf (publisher's version ) (Open Access

    Phase Diagram of a Ferroelectric Chual Smectic Liquid Crystal near the Lifshitz Point

    Get PDF
    Contains fulltext : 92722.pdf (publisher's version ) (Open Access

    Thickness-dependent phase transition in thin nematic films

    Get PDF
    Contains fulltext : 28882.pdf (publisher's version ) (Open Access

    Surfaces and Interfaces of Liquid Crystals

    No full text
    Item does not contain fulltext296 p
    • …
    corecore