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In the presence of external fields or in restricted geometries, the originally continuous 
helical sym m etry o f the Sm C* phase is broken by the appearence of field- or geometry- 
induced soliton-like domain walls. As a result of this symmetry breaking, a crossover 
between the plane-wave-like and soliton-like regime occurs in both static and dynamic 
properties which is responsible for some remarkable phenomena such as field-induced 
optical biaxiality or a field-induced band structure of collective excitations. Whereas 
we find in the plane-wave-like regime a degenerate soft mode which splits below the 
Sm A —>Sm C* transition into a symmetry recovering Goldstone-phason-mode and an 
amplitudon mode, we find in the soliton regime a splitting of the phason mode into 
acoustic and optic-like branches separated by a band gap. W ithin the same framework 
we also discuss other remarkable and extraordinary properties such as reentrant phases, 
Lifshitz points, one dimensional photonic band gaps and thickness dependent phase 
diagrams.

1. Introduction

In contrast to 3D periodic solids, many liquid crystalline phases exhibit a continuous 
rotational symmetry, which can be broken either spontaneously or by the presence 
of external fields or restricted geometries. This symmetry breaking is responsible 
for some remarkable thermodynamical properties of liquid crystals and is particular 
reflected in their dynamics, which is in many respects richer than the dynamics 
of solids. For instance, analogous to the case of many solid ferroelectrics, the fer
roelectric Sm A—>Sm C* phase transition is spontaneously induced by a doubly 
degenerate soft mode which softens in the Sm A phase on approaching Tc until it 
freezes out at Tc. However, in contrast to solid ferroelectrics, a continuous rota
tional symmetry is broken at Tc on going from the paraelectric Sm A phase to the 
ferroelectric Sm C* phase. In view of that, the doubly degenerate soft mode of 
the Sm A phase splits into two modes in the ferroelectric Sm C* phase: an ampli
tude mode which is analogous to the soft mode in solid ferroelectrics and a gapless 
symmetry recovering Goldstone mode. This Goldstone mode is responsible for the
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intriguing optical, dielectric and thermodynamical properties of ferroelectric liquid 
crystals. In the presence of external fields or in a restricted geometry, the Goldstone 
mode splits into an acoustic-like branch and an optic-like branch, separated by a 
band gap. This splitting is the result of the change of the plane wave type helicoidal 
modulation of the Sm C* order parameter to a soliton-like modulation. Ferroelectric 
liquid crystals thus represent a unique system where the whole region from the 
plane-wave to the extreme narrow soliton type modulation regime can be induced 
at will and the corresponding dynamics studied.

Ferroelectric liquid crystalline materials undergo a second order phase transition 
from the higher-symmetry Sm A phase, where the molecules are oriented along the 
smectic normal, to the Sm C* phase, where the molecules are tilted with respect to 
the layer normal. This spontaneous tilting is accompanied by the appearance of a 
nonzero local spontaneous polarization in the plane of smectic layers, so that the Sm 
C* phase is a ferroelectric liquid crystalline phase. The orientational ordering 
of the long molecular axes is described by the equilibrium director field r»o(r), which 
in the Sm C* phase is tilted with respect to the layer normal at a tilt angle 0, as 
shown in Fig. 1. The director no(r) precesses around the layer normal eg as one 
moves from one layer to another and forms a helicoidal structure. This precession 
is slow on the molecular scale, so that the corresponding period po of the helical 
structure is in the micrometer range. This is much larger than the length I of liquid 
crystalline molecules,so that typically l/po «  10-3 . The period of the helix is in

Fig. 1. Structure o f the a) homogeneous and b) hélicoïdal Sm C* phase. The arrows in Fig. lb  
illustrate the local orientation of the spontaneous polarization P(^).
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principle incommensurate to the basic periodicity of the smectic layering. Because 
of the chirality of liquid crystalline molecules, the point symmetry of each smectic 
layer is C2. This allows for the existance of a local electric polarization Po(r) along 
the two-fold axis which is perpendicular to the plane of the tilt. The equilibrium 
polarization field P(r) thus precesses in the same way as the director field, so that 
the net electric dipole moment of the bulk Sm C* phase equals zero.

The Sm A—»Sm C* phase transition is conveniently described within the Landau 
theory,1 where the order parameter is the tilt of the molecules £ =  (£z , £y , 0)

ix = n x nz - 9{z) cos $ (z ) , (la)

~ n y nz = B(z) sin . (lb)

In the unperturbed Sm C* sample the magnitude of the tilt angle is constant, 
9(z) = const., whereas the azimuth angle <p(z)t which describes the slow precession 
of the director field n(z) as one moves along the ^-direction, is linearly dependent 
on £ : &(z) = 2 'Kzfyo.

The spontaneous tilting of the long molecular axis in the Sm C* phase is ac
companied by the appearence of a spontaneous polarization P(z) along the local 
C2 axis

Px ~  ~P0 sin $ (z ) , (2a)

Py ~  Po cos ®{z) ■ (2b)

In contrast to proper ferro electrics, where the spontaneous polarization is the pri
mary order parameter,2 the spontaneous polarization in ferroelectric liquid crystals 
is a secondary order parameter. This means that the Sm A—»Sm C* phase transi
tion is not driven by the interactions which originate from the dipole moments of 
individual molecules. Instead, the spontaneous polarization in ferroelectric liquid 
crystals is induced by the tilt> which is here the primary order parameter, so that 
ferroelectric liquid crystals are improper, helicoidally modulated ferroelectrics.

The onset of the helicoidal ordering of molecules in the Sm C* phase of ferroelec
tric liquid crystals is responsible for some remarkable and extraordinary optical and 
thermodynamical properties of this phase. One can here observe and study many 
diverse and beautiful analogies to other systems such as incommensurate phases, 
spin waves, one-dimensional photonic band gaps, motion of a particle in a peri
odic potential, etc. In this respect, the Sm C* phase of ferroelectric liquid crystals 
represents a system where one can study rather general physical phenomena on a 
“mesoscopic”, micrometer scale.

Recently, a significant progress in our understanding of thermodynamical prop
erties and phase transitions in ferroelectric liquid crystals has been made. In partic
ular, we have observed the underlying relations between the spontaneous sym m e
try breaking and sym metry breaking by external fields and their manifesta
tion in the physical properties of ferroelectric liquid crystals. In this paper we would 
like to discuss in particular the similarities between a magnetic-field-induced and a



2324 ƒ. M usevi£ e t al.

geometry-induced Lifshitz point and the relation between the symmetry breaking 
by external fields and the spectrum of collective excitations in ferroelectric liquid 
crystals. The paper begins with the introduction of the concept of the Lifshitz point, 
which has a physical realization in the (H , T ) phase diagram of a bulk ferroelectric 
liquid crystal in a transverse magnetic field H , and continues to the discussion of 
the phase diagram of a ferroelectric liquid crystal confined into a thin layer. This 
is, in our opinion, a good starting point for the understanding of phase behavior in 
complex structures of great current interest, such as gels and porous media. The 
paper then continues with the discussion of the optical properties of helical struc
tures in external fields, where we use a simple perturbative approach to the optics 
of liquid crystals and show that the basic optical properties can be well described 
within such an approach. In Sec. 5 we introduce the concept of the order parameter 
excitations in the vicinity of the Sm A—>Sm C* phase transition. After that, we 
discuss the effects of an external magnetic field on the spectrum of phason excita
tions and explain the observed phenomena on the basis of symmetry arguments. 
The paper concludes with the discussion of the quasielastic light scattering and 
the fundamentals of the optical detection of the linear electrooptical response in 
ferroeletric liquid crystals.

2. Lifshitz Point in Ferroelectric Liquid Crystals

The Lifshitz point, originally introduced by Hornreich, Luban and Shtrikman,3 is a 
triple point where the disordered, homogeneously ordered and the inhomogeneously 
ordered phases coexist. The concept of a Lifshitz point was first introduced to the 
field of liquid crystals by A. Michelson4 in the late 70’s and represents a beautiful 
example of an analogy between liquid crystals and other spatially modulated sys
tems. In his work, Michelson has considered the physical realization of a Lifshitz 
point in the (H , T) phase diagram of a ferroelectric liquid crystal, where an external 
magnetic field is applied perpendicular to the helical axis.

If the diamagnetic anisotropy of liquid crystalline molecules is positive, molecules 
tend to align along the field direction. This results in the so-called soliton-Uke 
distortion  of the helical structure, where long, almost uniformly aligned domains 
are separated by thin domain walls, where the director changes the orientation by 
180° as we move along the helix. A 3D view of such a soliton-like distortion is shown 
in Fig. 2. The thickness of the domain walls decreases upon increasing field, whereas 
the period of the distorted structure increases. At a certain critical field Hc the 
distorted helical structure unwinds into the spatially homogeneous Sm C structure, 
as shown in the (if, T) phase diagram in Figs. 3a and 3b. On the other hand, if we 
decrease the temperature T  from the Sm A phase of a ferroelectric liquid crystal 
in a low external magnetic field, we will cross at a certain temperature the phase 
transition line T\(H)  and enter the modulated Sm C* phase. Alternatively, at high 
enough magnetic fields we will cross the phase transition line Tq(H) and enter the 
spatially homogeneous Sm C phase, as shown in Fig. 3. The phase transition lines 
T\(H ) , Tq(H) and HC(T) thus merge into a single Lifshitz point (Hi,, Tl), where
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Fig. 2. Distortion of the helicoidal Sm C* structure by a transverse magnetic field. A  3D-view  
of the projection o f the director field n (z ) onto the smectic layers is shown for H  — 0 (Fig. 2a) 
and H  fa H c (Fig. 2b), as calculated from the sine-Gordon equation (see Eqs. (13) and (14)). 
The 7r*soliton wall is indicated in b). Alternatively, Fig, 2a represents a surface with a continuous 
helical symmetry, like for example a uniformly twisted ribbon. Figure 2b represents a surface 
which has a discrete translational sym m etry because of the 7r-soliton walls. One can consider it 
as a nonuniformly twisted ribbon, for example.

a) b}
Fig. 3. Lifshitz point (H L i^ l)  in the ( H ,T ) phase diagram of a ferroelectric liquid crystal in 
an external m agnetic field for a) positive diamagnetic anisotropy and b) negative diamagnetic 
anisotropy. Both diagrams are schematic and T* — ^  e C 2, where is the phase transition 
temperature for the racemic mixture.
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the disordered (Sm A), homogenerously ordered (Sm G) and helicoidally ordered 
(Sm C*) phases coexist.

Basic features of the (H , T) phase diagram of a ferroelectric liquid crystal 
in an external magnetic field can be derived from the simple Landau free-energy 
expansion1,4

Here, g& is the equilibrium free-energy density of the Sm A phase, Ax is the diamag
netic anisotropy and the magnetic field is applied in the y-direction, H = (0, if, 0). 
We assume that a(T) — a(T  — 7^), a  and b are positive constants, and 2r  ^ 
the phase transition temperature for the racemic mixture. A racemix mixture is 
a 1:1 mixture of the right- and left-handed enantiomers of the liquid crystal. In 
the Eq. (3), A is the coefficient of the Lifshitz term, which has the origin in the 
chirality of the molecules and induces helical modulation of the Sm C* phase, K$ 
is the torsional elastic constant, e is the dielectric constant of the Sm A phase, ft 
is the fiexoelectric coefficient and C is the electroclinic coefficient. We assume that 
the system is homogeneous in the x^y plane, which is parallel to the smectic planes.

The polarization terms in the Eq. (3) can be eliminated by minimizing g(z) 
with respect to Px and Py. This results in the relation between the equilibrium 
spontaneous polarization P and the tilt vector £

Note that the renormalization of a —* a changes the phase transition temperature

(3)

(4b)

(4a)

and renormalizes /<3, A and a(T),

K 3 = I<z -  efi2 , A =  A +  enC , a{T) =  o(T) -  eC2  . (5)

by + £̂ “* The partially minimized free-energy density is written as

(6 )
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The phase transition boundaries between the Sm A phase and the lower temperature 
modulated Sm C* or homogeneous Sm C can be obtained by the linear stability 
analysis.4 As a result, one obtains the so-called Lifshitz field Hl

Hl =  2 A . -  (7)
\jKa I |

which characterizes the phase diagram and determines the position of the Lifshitz 
point in the (Ht T) phase diagram.

Below the Lifshitz field, H  < Hi,, the Sm A and the modulated Sm C* phases 
are separated by the A-line, T\(H)

H < H l  : TA(H) = n  +  i e C 2 +  A T (l + ^  jQ . (8)

Here, AT =  describes magnetic-field dependence of the A-line. For positive 
Ax this line increases with the field, whereas for negative Ax it decreases with the 
field. Along the A-line the phase transition is of second order. Above the Lifshitz 
field, the Sm A phase transforms into the homogeneous Sm C phase at the second 
order phase boundary T0 (H)

i /  Av \  H2
H > H h \ Tq(H) ~ T ^-\—  eC2 + 2A Xf 1 +  * '

a

The (H , T) phase diagrams for the cases of positive and negative diamagnetic 
anisotropies and a simple Landau free-energy expansion (Eq. (3)) are shown schema
tically in Figs. 3a and b. Here, the most interesting feature is the position of the 
Lifshitz point (Hl ,  Tl) in the phase diagram, which can be located by the Eqs. (7) 
and (8). It can be shown4 that at the Lifshitz point the two phase boundaries 
T\ (H) and To (H) merge tangentially to each other and to the line of the critical 
magnetic field Hc (T) which separates the modulated and the unwound phase, as 
shown in Fig. 3. It can be also shown that near the Lifshitz point, the line of the 
critical magnetic field Hc is of first order.4

Along the A-line, the wave vector qc (H) of the modulated Sm C* phase decreases 
smoothly with the field

H < H h : , c (H) = qc ( 0 ) J l - H * / H i  (10)

from the value qc (0) =  -̂ r at H ~  0 to zero value at and above the Lifshitz field

H > H h i qc (H) = 0. (11)

The line of the critical field HC(T), which originates in the Lifshitz point and 
separates the modulated Sm C+ and the homogeneous Sm C phase, can be derived



2328 I. M uSevit et at.

analytically only in the so-called constant amplitude approximation (CAA). Nu
merically, this line was first calculated by L. Benguigui and A. E. Jacobs.5 Within 
the CAA one assumes that the magnitude of the tilt angles does not change signifi
cantly with the external field, whereas the phase &{z) is allowed to vary with z and 
H. It can be shown that this is a reasonable approximation except within 10 mK 
around the Lifshitz point.6 The phase dependent part of the free-energy density is

After the Euler-Lagrange minimization of the free-energy F  =  ƒ g(z) dz with re
spect to §>(z) and d$(z)jdz  we obtain the well-known sine-Gordon equation for

The phase profiles § q{z) which minimize the free-energy have the form of the so-

Here, sn(-u, k) is the Jacobi elliptic sine of the reduced coordinate u = z/(£k),

Within this approximation the critical field is inversely proportional to the period

external magnetic field.7 The critical magnetic field is here temperature independent 
because the period of the unperturbed helix is temperature independent within the 
free-energy expansion (3).

The phase profile $o(^) which satisfies the sine-Gordon equation is shown sche
matically in Fig. 4 for different magnetic fields. For H = 0 the helical modula
tion is plane-wave-like with a linear dependence of the equilibrium phase, $o(z) = 
(2tt I  pa) z. For H  ^ 0 the helical modulation changes into the soliton-like, which is 
most pronounced in the narrow-soliton regime near HCi as shown in Fig. 4. Large 
regions of nearly constant phase, where the molecules are almost homogenously

(13)

called 7T-soliton lattice and are described by the Jacobi’s elliptic functions

(14)

where £ =  Ax | H 2) is the magnetic coherence length. The modulus k of
the Jacobi’s elliptic function is defined by the equation

where E(k) is the complete elliptic integral of the second kind and Hc is the critical 
magnetic field for the unwinding of the helical structure

(16)

Pa of the unperturbed helix, which is similar to the behavior of chiral nematics in an
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Fig. 4. The phase profiles <&o(z) which are the solutions of the sine-Gordon equation for H  — 0 
and H  ^  0. The figure is schematic and illustrates the appearance of the 7r-soIiton walls, where 
the phase changes by 180° on a very short distance.

aligned into the field direction, are separated by narrow 7r-soliton walls. Within the 
soliton wall the phase $o changes by 180° on a very short distance. By decreasing 
the magnetic field, the width of the soliton walls decreases slightly, whereas the dis
tance between the soliton walls increases and diverges at Hc. The phase transition 
is here of second order with the divergence of the helical period

p(H) = p0( ^ j  K {k )E (k ) .  (17)

Here, K(k)  is the elliptic integral of the first kind which diverges logarithmically at 
H e

In Eq. (8), A T  — ^ 4- determines the magnitude of the increase of the phase 
transition temperature T\ at the Lifshitz point. Typically, a  104 Nm“2K ~ \  
A «  10-5 Nm-1 and K$ «  10~12 N, so that the expected increase of the phase 
transition temperature is of the order of AT « 1 0  mK for a ferroelectric liquid 
crystal with a period of the helix of pq «  1 fim. The magnitude of the Lifshitz field 
can be estimated from Eq. (7). By taking j Ax 10“6 one obtains Hi, «  15 T, 
which is within the experimentally accessible range of static magnetic fields. In 
fact, the magnitude of the Lifshitz field can be adjusted by mixing different parts of 
the left- and right-handed enantiomers, thus changing the magnitude of the Lifshitz 
coefficient A in Eq. (7).

The (if , T) phase diagram of a ferroelectric liquid crystal in an external field was 
reported for the first time in high-magnetic filed experiments on p-decyloxybenzili-
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dene-p’-amino-2-methylbutyi cinnamate (DOBAMBC)8 and is shown in Fig. 5. The 
phase boundaries were determined by light scattering and dielectric spectroscopy 
and are in qualitative agreement with theoretical predictions. The Sm A—»Sm 
C* phase transition line was found to be practically field-independent within the 
resolution of 20 mK up to 10 T, which is in agreement with the estimated increase 
of the A-line. Later on, the experimental work on the (H) T) phase diagram was 
continued by A. Seppen,9 who succeeded in observing the Lifshitz point in a mixture 
of chiral and racemic DOBAMBC. Recently, similar experiments were performed in 
the presence of a high frequency electric field,10 which couples quadratically to the 
dielectric anisotropy.

The magnetic field experiment in chiral DOBAMBC, however, revealed for the 
first time the existence of a reentrant Sm  C* phase very near the A-line and 
indicated the “runaway” of the Lifshitz point in chiral DOBAMBC. Similar behavior 
was observed in recent electric-field experiments.10 Furthermore, the experiment 
clearly showed a very strong temperature dependence of the critical field Hc(T)i 
which is in apparent disagreement with the predictions of a simple Landau model.
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This peculiar behavior was explained by a high-resolution measurements of the 
temperature dependence of the period of the helix, which confirmed that the critical 
magnetic field is inversely proportional to the period of the helix,9 HC(T) oc p o .

The observation of a strong temperature dependence of the critical magnetic 
field thus addressed the question of the relevance of a simple Landau model and 
the reasons for its apparent failure to describe magnetic-field effects correctly. The 
key question that any proposed model should answer seems to be the temperature 
dependence of the period of the helix in ferroelectric liquid crystals, which shows 
in many cases very characteristic and anomalous behavior in the vicinity of the Sm 
A—»Sm C* transition.11 Because of the relation (Eq. (16)) between the helical period 
and the critical magnetic field, this may reflect in the non-monotonous temperature 
dependence of the critical field and seems be the reason for the observed reentrance 
of the Sm C+ phase in the (H , T ) phase diagram. There are several models which can 
explain this reentrance.5,6 Among them, the so-called generalized Landau model,6 
as first introduced by Zek§ in 1984,12 seems to give the most complete description of 
most thermodynamic properties of ferroelectric liquid crystals6*13 in a transparent 
and coherent fashion.

3. Phase Diagram of a Ferroelectric Liquid Crystal in a Restricted
G eom etry

Behavior of liquid crystals in restricted geometries is a subject of growing current 
interest because of important technological implications14 as well as fundamental 
physics.15,16 From the technological point of view, almost every liquid crystalline 
based device is a realization of a restricted geometry, where the liquid crystalline 
material is constrained to a thin spacing between two supporting glass plates. The 
ordering of the liquid crystal in such a geometry is determined by the liquid crystal- 
surface interaction and is obviously an important technological point. On the other 
hand, the liquid crystal-surface interaction is interesting from a fundamental point 
of view, because many interesting analogies to other systems can be studied. For 
example, if the surface coupling is a random variable in the interface plane, it will 
play the role of a random field, which strongly couples to the director field n(r) 
at the surface. This may have a very interesting influence on the order parameter 
dynamics as well as the nature of the phase transitions in liquid crystals. For 
nematic liquid crystals, some interesting studies have been published that used a 
very sensitive ellipsometry system to study the ordering at the liquid crystal-glass 
interface.17

Here we shall consider a simple example of a homogeneous surface coupling in 
a restricted geometry which has been studied previously.18 The ferroelectric liquid 
crystal in the so-called bookshelf geometry is confined in between the two parallel 
plates, separated by a distance d = 2L, as shown in the inset to Fig. 6. The surface 
anchoring energy is taken into account in a simple form

1
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Fig. 6. T he variation of the a) Sm A —»Sm C* phase transition temperature Tc(d) and b) critical 
wave-vector qc(d ) along the A-line. Here, is the wave-vector o f the unperturbed Sm C* phase 
and -f ~ e C 2> where is the phase transition temperature for the racemic mixture.

and C8 is assumed to be constant throughout the interface. Here, ^  is the out-of- 
plane component of the tilt and for a positive value of the coupling constant, Cs > 0, 
parallel alignment of £ with respect to the interface is favored. The homogeneous 
form of the surface anchoring energy in the z~y plane, which favors homogeneous 
alignment, is competing with the “bulk” elastic energy, which favors helicoidal or
dering far from the surfaces. For a thin enough sample we may thus expect that 
the helical structure would be unwound by the surface influence. In a certain way, 
the role of the surface term is thus similar to the role of the homogeneous magnetic 
or electric fields, which tend to unwind the helical Sm C* structure. We can thus 
expect that the (d, T) phase diagram of a ferroelectric liquid crystal would resemble 
the (H , T) phase diagram because of similar couplings.

The phase boundaries in the (d,, T) phase diagram of a ferroelectric liquid crystal 
can be determined by the stability analysis of the Sm A phase using the free energy
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density

& , , )  = \ a { T ) ( a  + {*) -  A ( « . f  - € , f )  + ) ’ + ( f  ) ’)

+  \K3{{̂t) +(fr) ) + ( 1 9 )

For the sake of simplicity we have been using here the old notation for A and K 3, 
but one has to be aware that these are polarization-renormalized values. We have 
also used the one constant approximation for the elastic distortion in the re and z 
directions, respectively. The Sm A-Sm C* transition for an unconfined bulk sample 
is Tc = T* -j- ~ K 3 where qc = AjK$ is the wave vector of the undeformed helix 
and T* =T£ + ¿ e C 2.

From Eq. (19) the stability analysis leads to a system of Euler-Lagrange equa
tions for the bulk and surface, which can be solved by the ansatz

£*(#, z) ~  ƒ (#) co s(^ ), (20a)

£y{x, z) = g{x) s in (^ ). (20b)

As a result,19 one obtains a thickness dependent phase transition temperature Tc(d), 
which is shown in Fig. 6a, together with the thickness dependence of the critical 
wave-vector qc(d) along this phase transition boundary, shown in Fig. 6b. Because 
the boundary conditions interfere with the helicoidal ordering, characterized by the 
wave-vector qc(d) in the Sm C* phase, for finite d the phase transition Sm A—>Sm 
C* will take place at a lower temperature than in the bulk. There will be, however, 
some limiting thickness d\,p, below which the phase transition Sm A—»Sm C will take 
place. Since the homogeneous boundary conditions for d < ¿¿lp do not interfere 
with the homogenous ordering of the surface-unwound Sm C* phase, we expect a 
thickness-independent phase transition boundary for d < dhp

d < (¿lp : TQ(d) — T* — const., (21)

d > d LP : Tc(d) < Tc(d -» 00). (22)

The predicted (d , T ) phase diagram thus resembles the (if, T) phase diagram 
of a ferroelectric liquid crystal with negative diamagnetic anisotropy, as shown in 
Fig. 3b. Furthermore, one can see from Fig. 6b that the critical wave-vector qQ(d) 
goes continuously  to zero at ¿lp, which is thus a Lifshitz thickness , where the 
Sm A, distorted Sm C* phase and the homogeneous Sm C phases coexist. The value 
of the Lifshitz thickness depends on the surface coupling constant and the liquid 
crystalline material constants, and can be evaluated in the limiting cases of weak
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Fig. 7. T he variation of the Lifshitz thickness ¿ lp  and the critical thickness dc with the normalized 
surface coupling strength c =  2 iT3%c '

and strong surface anchoring couplings, respectively,

Cs —► 0 , dip —> 0 , (23a)

v/3
C .-> o o , dLP ~ P o -  0.276po . (23b)¿'K

The phase transition boundary between the distorted Sm C* phase and the sur
face unwound Sm C phase can be treated analogously to the cholesteric-nematic 
transition.20 In the constant amplitude approximation the Sm C* —► Sm C phase 
transition is of second order at a critical thickness dc. The analysis gives the vari
ation of the critical cell spacing dc with the anchoring strength <781 which is illus
trated in Fig. 7 together with the corresponding Lifshitz thickness dhp• For small 
anchoring strengths, the ratio between dc and dip is constant, which is similar to 
the critical magnetic fields in the (if , T) phase diagram. However, in the limit 
of strong surface anchoring the situation is quite different. Whereas the Lifshitz 
thickness saturates for large C8) this seems not to be the case with dc. Instead, the 
critical thickness continues to grow with increasing C8. This is a strong indication 
that the constant amplitude approximation is valid at small CSi but breaks down 
at large Cs. Experimental observations of the Sm C* structures in thin samples21 
indicate that instead of a continuous director field, a system of disclination lines 
mediates the transition between the homogeneous orientation dictated by the sur
face and the helical structure in the interior of the liquid crystal. This means that 
we are always in the strong coupling regime. In the case of a system of disclination
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Fig. 8. (d, T )  phase diagram of CE-8 on polyimide PIX-1400 surface.

lines, the critical thickness is19

<24)
Here, K\  is the elastic constant for bend deformation, which is assumed to be equal 
to the splay elastic constant.19’21 The (d, T) phase diagram has been determined 
in wedge type cells of liquid crystal 4-(2’-methylbutyl) phenyl 4,-n-octyIbiphenyl- 
4-car boxy late (CE-8), using untreated polyimide coated surfaces.19 The observed 
phase diagram is shown in Fig. 8 and is in qualitative agreement with theory. The 
critical thickness is 2 fim. at Tc — T  = 5 K and increases slightly on approaching the 
Sm A phase. The experiment allows for the estimation of the coupling constant, 
Cs > 3 x 10-3 Jm~2, and indicates that the system is in the strong surface coupling 
regime. Because of the experimental limitations, the critical thickness very near 
the Sm A phase could not be determined unambiguously, so the question of the 
existence of a Lifshitz point in such a system is still open.

4. Optics of Ferroelectric Liquid Crystals in M agnetic Fields

Many of the interesting and fundamental properties of ferroelectric liquid crystalline 
phases can be conveniently studied by different optical and electrooptical techniques 
such as quasielastic light scattering, optical response measurements, selective reflec
tion, optical interferometric techniques, etc. The reason for using optical spectro
scopic methods in the analysis of thermodynamical properties of ferroelectric liquid
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crystals lies in the strong coupling of the director field n(r, t) to the dielectric tensor 
field e(r,f), as well as in the high sensitivity and local probing of optical methods. 
Understanding the optical properties of ferroelectric liquid crystals, which are by 
themselves very attractive and interesting problems, is thus necessary. Although 
almost everything which is related to the problem of light propagation in these biré
fringent and helicoidally modulated structures seems hardly solvable analytically,22 

we would like to present here some simple views and basic concepts, which sur
prisingly can explain most of the basic optical phenomena in ferroelectric liquid 
crystals.

In the ferroelectric Sm C* phase, each smectic layer can be considered as a 
weakly biaxial Sm C phase, which is described by the dielectric tensor e with the 
eigenvalues e\ , e2 and € 3

e =
e\ 0 0 
0 C2 0 
0 0 e3

(25)

By symmetry arguments, one of the axis of the eigenframe (1,2,3) (e.g. 1 J| y || C2 ) 
must be parallel to the (72 axis. The difference between e\ and € 2  is usually small, 
so that each layer of the Sm C* phase can be sometimes considered as an optically 
uniaxial layer, with the optical axis tilted at a tilt angle 0  with respect to the helical 
axis.

The dielectric tensor which defines the optical properties of the Sm C* phase is 
obtained by two successive rotations of the tensor e, starting from the configuration 
where the eigenframe (1,2,3) coincides with the laboratory frame (rc,i/,z), as shown 
in Fig. 9. First, the tensor e is rotated through the tilt angle 6  around the y-axis 
followed by a rotation through the phase angle $ (2) around the 2-axis. The resulting
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dielectric tensor can be written as a sum of three characteristic contributions

0r |(e i+ e 2)+ !(e3 -e i)s in 20
0 

0

+  ( ¿ 3  “  € i ) s i n 0  C O S 0

+ 2 ( (ei — e2) ”  ei) sin2

0

|(e i+ e2) + |( e 3-€ i)sin 2Ö 0

0 €i sin2 6 +e 3 cos2 6

0 0 cos $ (2)
0 0 sin $ (2)

.cos §{z) sin $(z) 0

cos 2§(z) sin 2$(^) 0

sin 2 $(z) — cos 2 $(z) 0

0 0 0

(26)

The spatially inhomogeneous terms in the dielectric tensor of the Sm C* phase (i.e. 
the second and third terms) are typically a factor of 10” 1 to 10“2 smaller than the 
principal values e*. This suggests that for the optical properties of the Sm C* phase, 
a simple perturbative approach might be used, where spatially inhomogeneous terms 
of e(z) play the role of a small perturbation.

Following the approach of M. A. P, Peterson,23 we define a tensor-weighted inner 
product of the two eigenfunctions ¡k,p) and |k',p), characterized by the wave-vector 
k  and the polarization p as

(k'.p'lk.p) =  <Ek v |Ek,„) =  ^  ƒ d3r EkV  £(r) Ek,p . (27)

Let | k ,p )  and | k ',2>') represent the eigensolutions of the wave equation in the inho
mogeneous medium characterized by the dielectric tensor e(r) — e0 + <5e(r).

{êo1 V  x V  x -w 2 go1 ¿ejjk,?} = w2[k,p). (28)

Here, the speed of light in vacuum is set to co =  1. The above form of the wave 
equation is similar to the Schrödinger equation, and eQ and Se are the homogeneous 
and inhomogeneous parts of the dielectric tensor e. It can be shown that the op
erator ^  =  r 1 V  x V x  is Hermitian with respect to the tensor-weighted inner 
product (Eq. (27)), so that the eigenvectors |kyp) are orthogonal and the w2(k,p) 
always real.

In the case of 6 e = 0 we obtain the eigenvalue u /o (k ,p ) ,  describing the disper
sion relation for the propagation of linearly polarized a and 7r plane waves in a 
birefringent, uniaxial medium, which are denoted by |k, a) and |k,7r), respectively. 
The presence of a small periodic perturbation in the wave equation (Eq. (28)) 
significantly alters the situation. In particular, one has to introduce the concept 
o f  a Brillouin zone> whereas the eigensolutions should obtain the Bloch form> 
reflecting the appearance of a periodic perturbation term 8 e(z). Moreover, on
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the basis of general considerations, one can expect that the periodic perturbation 
would have the strongest influence at the points of degeneration

w0(k, er) -  w0(k,7r) . (29)

Basic features of the optical spectrum can be obtained by applying a simple pertur- 
bative approach to the wave Eq. (28). The perturbed eigenvalue w2(k,p) is given 
by

a>2(k ,p) = u^{k)p) 1 _  (k,?|e ^gjk,?) _  1

(k,p|k,p) (k,p|k,p)

K k ^ lr^ elk ',^ ) !2
(30)

whereas the approximate solution is expressed in the form of a Bloch wave

__ ^ ( k ti>)!<k'ti/ 1£e|ktp}|2
(hik

V , P > (31)

The above expressions show that the perturbation 6 e(z) plays the role of a periodic 
potential which couples the unperturbed eigenmodes |k, cr) and |k ,7r). Because 6 e 
contains two terms with spatial periods qc and 2qc> respectively, we can expect that 
the perturbation would mix unperturbed eigenwaves with wavevectors that differ 
by

k — k' = qc or 2qc , (32)

where the corresponding unperturbed eigenvalues are degenerate, wo(k,cr) =  uq 
(k, 7r). In the ferroelectric liquid crystal this is fulfilled when light is propagating 
at a Bragg angle or along the helix.

The most striking result of the presence of a periodic dielectric tensor 6 e(z) is 
the appearance of band gaps at the degeneration points, as shown in Fig. 10. This 
results in a band structure fo r  the dispersion relation of the propagation of 
light in a weakly anisotropic, periodic medium, and strongly resembles the energy 
band structure for a particle, propagating in a periodic potential. One can see 
from Fig. 10 that a periodic perturbation induces frequency gaps in the originally 
degenerated points B and C. As a result, we obtain three characteristic reflection 
bands, which are centered at frequencies u>g, ojq and Wg, respectively. Whereas 
the C-band is a total reflection band, where no light can propagate in the medium, 
the B-bands are selective reflection bands. Here, only a certain polarization of the 
incident light is reflected, whereas the light of the proper polarization can propagate 
in the liquid crystal. A similar band structure was obtained in a numerical analysis 
of the solutions of the wave equation in the Sm C* phase by Oldano.24 The fact 
that this simple perturbative approach describes very well all the basic features of 
the optical spectrum of the Sm C* phase is a very nice illustration of the fact that



Ferroelectric Liquid Crystals: From the Plane Wave , 2339

Fig. 10. T he effect o f a periodic perturbation 6e(z) (see Eq, (26)) on the dispersion relation for 
light propagation in an optically uniaxial crystal. The figure is schematic, is the 2 -component 
of the wave-vector of light in the crystal, whereas a  and 7r denote the dispersion of the ordinary 
and extraordinary waves, respectively.

the origin of the basic optical phenomena in birefringent, modulated structures lies 
in the fo rm  and symmetry o f the dielectric tensor  and not in the magnitude 
of its components.

The first order approximation to the light propagation in a periodic, birefringent 
crystal is valid if the modulation of the dielectric tensor 6 e is small and the light 
does not propagate neither at the Bragg angle nor along the helical axis. The 
approximate solutions are just a and 7r linearly polarized plane waves, whereas 
from Eq, (30) the first order corrected eigenvalue is

• ' • « • - • M - H a s * ) -  w >

Here, the second term in brackets is just the space averaged value of the inhomoge- 
neous part of the dielectric tensor 6 e(z). Higher order corrections to the eigenvalue 
w ( k ,p )  include terms proportional to ¡ { k ^ p 'je Q 1 ¿e [k ,p )| 2 oc 04 and are important 
near the points of degeneration, i.e. near the edges of the Brillouin zone, introduced 
by the periodic form of the perturbation 6 e(r).

The first order corrected eigenvalue u>2(k,p) in the presence of the perturba
tion 6 e(z) can be interpreted as a change in the refractive indices of the medium. 
This means that in this approximation the optical properties are described by the 
corresponding space-averaged uniaxial tensor  (e). The first order correction 
preserves the form of the normal wave surface, whereas the diagonal elements of
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the corresponding space-averaged tensor (e) are

{e)xx =  | ( ei +  e2) +  “  e\)Q2 + ~((ei -  e2) + (e3 ~  ei)02)  (cos2$ (2)}, (34a) 

(t)yy =  ¿ (ei + ez) +  ~ ei)02 -  ^((«i -  e2) + (e3 -  (cos 2$ (2}), (34b)

{ é ) z z  =  €3 — (£3 — el )^2 • (34c)

In the undistorted helicoidal phase, where $(z) = ^ - z y the spatial averages equal 
zero, i.e. (cos 2$) =  0, and the dielectric tensor (e) reduces to the uniaxial tensor 
with the optical axis parallel to the helical axis.

The components {e)xx and (e)yy depend on the magnitude of the external mag
netic field H  through the space averaged values of (cos23>(z)) — 1 — 2(sn2 (u>k) } 2 5

k m  =
ex -  A (H) 0 0

0 €x + A(H) 0 
0 0 ezz

(35)

Here, ex = |(e i + 62) +  |(es — ei) 02 is the magnetic-field independent part, whereas 
the magnetic-field dependent part is

A (H) = \  ((e, -  e2) +  (*  -  «,) »*) ~ l )  ■ (36)

In the limit of small fields, H  —» 0, A(H) —» 0, whereas near the critical field 
H Hc, A (ff)  i ( ( Cl -  ea) +  (£3 -  £1) 92)- As a consequence, in the zero- 
field limit, {§_) obtains the uniaxial form, whereas in the presence of a transverse 
magnetic field it obtains a biaxial form. This is an example of magnetic-field 
induced biaxiality in a distorted helicoidal phase. It should be stressed that the 
magnetic field induced biaxiality is here mainly the result of the global distortion 
of the phase of the order parameter and to a lesser extent the result of the intrinsic 
local biaxiality of the liquid crystal molecules.

The above model predicts a reduction of {e)xx> whereas (e)yy is expected to 
increase with the increasing magnetic field. Although the overall changes of the 
components of (e) are expected to be small, they should be observable at fields 
far below the critical field. In particular, magnetic field induced biaxiality in the 
ferroelectric phase with A x  > 0 should be observable as a magnetic-field induced 
distortion of the conoscopic figure in a plane, perpendicular to the direction of the 
magnetic field, i.e. the x-z  plane. Figures 11a and l ib  show the influence of an 
external magnetic field on the x-z  cross-sections of the normal wave surface of a fer
roelectric liquid crystalline phase. In zero field, the section of a normal wave surface 
at y ~  0 consists of a circle and an oval, corresponding to the unperturbed ordinary 
(<r) and unperturbed extraordinary (?r) wave, with the optical axis along z. The
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C)

Fig. 11. The normal wave surface in the Sm C* phase for a) H  =  0 and b) H  ^  0. The so-called 
conoscopic figure is shown in c) and results from the interference of the ordinary and extraordinary 
waves, propagating at an angle oc with respect to the optical axis which is in the ^-direction.

magnetic field dependence of the ordinary and extraordinary indices of refraction 
for the propagation of light in the x-z  plane are deduced from Eqs. (34) and (35):

nl = {e)yy{H) = ex + A(H), (37)

sin2 a
ni +

{c)zz £x A(H)
(38)

Here, a  is the angle between the direction of wave propagation and the z  axis. Under 
the influence of an external field, the circle, corresponding to the phase velocity of 
the ordinary wave c =  cq/ iiq} contracts with increasing magnetic field, whereas the 
oval is deformed in the ^-direction, as shown in Fig. lib . The single optical axis 
at H  =  0 splits into two optical axes, located symmetrically with respect to the 
z-axis. As a result of this splitting, the conoscopic figure which reflects the shape 
of the two normal wave surfaces is deformed in the x-z  plane. The deformation 
is most pronounced near the center of the conoscopic figure, where even a small 
change in the index of refraction induces a strong splitting between the two optical 
axes. Finally, very near the critical field, the angle ft between the two optical axis 
should saturate near the value tan(/?/2) «
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H {T)

Fig. 12. Magnetic field induced shift of the position of the first (n =  1) and the second (n  =  2) 
minima of the conoscopic figure in the antiferro electric (AFE) phase of a liquid crystal M HPOBC.25 
The solid line represents the best fit within the first order approximation to the optics of chiral 
liquid crystals. T he critical field for the unwinding of the AFE helical structure is 13 T  and is 
observed as a point where the positions of the conoscopic minima saturate.

According to Eqs. (34) and (35), A(H) depends strongly on the magnitude of 
the tilt angle and the difference € 3 — This means that the deformation of the 
normal surfaces is very small near TCi where the tilt angle is small and increases upon 
decreasing temperature. The influence of the magnetic field on the normal surface 
of a helicoidal smectic phase has recently25 been observed in an interferometric 
study of the magnetic field induced distortion in an antiferroelectric liquid crystal 
and is shown in Fig. 12. An excellent agreement was found between the predicted 
and observed distortion of the normal surface.

5. B roken Sym m etries and  Gapless Phasons

One of the most striking features which can be observed near the Sm A—►Sm C* 
phase transition is the spontaneous breaking of the point symmetry of the Sm 
A phase at the phase transition point Tc. The symmetry breaking is here the 
result of the spontaneous tilting of molecular directors in the Sm C* phase, which 
reduces the original D«» point symmetry of the Sm A layers to the C2 symmetry 
of the chiral Sm C* layers. The interesting aspect of this transition is the fact that 
the continuous point symmetry  is broken. This has some very interesting and 
fundamental consequences for the order parameter dynamics and is in particular 
reflected in the spectrum of the so-called elementary excitations of the system. 
According to the Goldstone theorem,26 as a result of the continuous symmetry
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breaking a zero frequency symmetry restoring Goldstone mode appears in 
the Sm C* phase, which tries to restore the broken continuous symmetry of the Sm 
A phase.

The central idea of the conventional theory of spontaneous symmetry breaking 
at the phase transition point as first proposed by van Hove27 and by Landau and 
Khalatnikov28 is the critical slowing down of the order parameter excitations at 
Tc. This implies the existence of a mode ws( ,̂ T ) in the excitation spectrum u>(qyT )y 
of which the relaxation rate goes to zero as we approach the phase transition from 
above

u.2(9, T) = a ( T - % )  + k ( q - q c) \  T > % .  (39)

Thus for T  — Tc and q =  qc the relaxation frequency of this mode equals zero

ios(qc, Tc) = 0. (40)

This is the so-called soft mode of the transition in question. It is a symmetry 
breaking mode which freezes out at the phase transition point and breaks the sym
metry of the higher temperature phase.

The concept of the soft mode was first introduced to the Sm A—»Sm C* phase 
transition by Blinc and Zeks29 in 1978. The theory was based on a simple non
equilibrium free-energy expansion (Eq. (3)) and analyzed the spectrum of the or
der parameter fluctuations within the Landau-Khalatnikov dynamical equations. 
Within this approach, the order parameter is expressed as a sum of a static and a 
time-fluctuating part, respectively,

£(M ) =  £o(z) +  0£ (M ), (4la)

P (z,i) =  Po(*) +  «P(2,t). (41b)

Here only the fluctuations 6 £ and ¿P with a wave vector along the 2-axis are con
sidered. After applying the Landau-Khalatnikov dynamical equations of motion, 
the spectrum of the elementary order parameter excitations can be divided into two 
groups of dispersion branches: the high frequency ‘polarization modes30 and the 
low frequency director modes. Whereas the polarization modes represent out-of 
phase fluctuations of <5£ and ¿P, the director modes represent the in-phase motion of 

and ¿P. The relaxation rates of polarization modes are typically in the 100 MHz 
region and are much faster than the relaxation rates of the director modes which 
are in the range of 1 Hz to 1 MHz. In the following we shall consider the dynamics 
of the director modes, which show critical behavior.

In the Sm A phase, the dynamical analysis of the nonequilibrium g(zt t) (Eqs. (6) 
and (41)) gives a doubly degenerate soft-mode branch of excitations with a dis
persion relation

rs- ‘(«) = ^ ( T  -  Tc) + ^ ( ? c ±  q f . (42)
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a) b)

Fig. 13. Soft m ode excitations in the Sm A phase o f a chiral ferroelectric liquid crystal. The  
homogeneous equilibrium director field shown in a) is excited by the helical fluctuation as shown  
in b).

The soft mode dispersion branch is thus strongly temperature dependent and has a 
minimum at the wave vector gc, which is the wave vector of the modulation of the 
Sm C* phase. In the Sm A phase the order parameter excitations have a form of 
helicoidally polarized overdamped plane waves with the wave vector q (see Fig. 13)

As one can see, these excitations represent the helicoidal-like fluctuations of the tilt 
angle. Once the excitation is created by thermal excitation, it relaxes to zero in 
a characteristic relaxation time r(q). The relaxation time for an excitation with a 
wave vector qc diverges as we approach the phase transition temperature Tc from 
above

At the phase transition the soft mode excitation thus freezes-out in a form of a 
space coherent helical wave and creates a static helicoidal Sm C* structure.

By performing a similar dynamical analysis one obtains in the Sm C* phase two 
low-frequency dispersion branches, which originate from the soft mode branch at 
Tc. The so-called amplitudon dispersion branch represents the plane-wave-like 
excitations of the magnitude of the tilt angle. It is strongly temperature dependent 
and shows a parabolic dispersion of the form

(43)

T  -> T+ : r(qc) -> oo. (44)

r I 1(i)  =  ^ ( T - T c) +  ^ ( 9c± 9)i . (45)
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The second branch which originates from the soft mode branch is the so-called 
phason dispersion branch and is here of particular interest because it is closely 
related to the symmetry breaking in the system. In the unperturbed Sm C* phase 
the phason modes represent the phase-wave-like fluctuations of the phase $ (zyt) 
of the order parameter with a gapless dispersion relation at all temperatures 
below Tc

?Phfa) = ^ ( f t  ±  <1 ?  • (46)

The phason mode with the wave vector q = ±qc represents small rotations or, 
what is the same, a sliding o f the helix as a whole along the helical axis, 
restoring the axial D ^  symmetry of the Sm A phase. It is the characteristic zero 
frequency sym m etry restoring Goldstone mode of the transition and is a di
rect consequence of the spontaneous breaking of the continuous symmetry group 
Dqo. The order parameter dynamics in the ferroelectric Sm C* phases can be 
studied by various spectroscopic methods. Because the fluctuations of the direc
tor field are strongly coupled to the fluctuations of the polarization field P (r,i) 
and to the fluctuations of the optical axis, dielectric spectroscopy and quasielastic 
light scattering spectroscopy are two methods which are most widely used here. 
Whereas dielectric spectroscopy measures the linear response of the system to a 
small perturbating electric field, quasielastic light scattering spectroscopy analyzes 
the time-correlation in the thermal noise of the system in question. Furthermore, in 
the dielectric spectroscopy one obtains information on the polar modes with wave 
vector q = 0, which can only couple to the homogeneous measuring electric field. 
In this respect, light scattering spectroscopy is far more advantageous because it 
allows the study of the dynamics of polar or nonpolar modes with wave vectors in 
the range of the wave-length of light which is used in the experiment. One can 
thus directly determine the dispersion relations for the order parameter excita
tions. This is of special importance when studying the phase transition into the 
inhomogeneous phase, where the soft mode condenses in a general point q ^  0 of 
the reciprocal lattice.

The first indication of the soft-mode behavior in the vicinity of the Sm A—»Sm 
C* phase transition was given by the linear electrooptic response experiment per
formed by S. Garoff and R. B. Meyer in 1977.31 In their experiment, Garoff and 
Meyer measured the temperature dependence of the low-frequency susceptibility 
x{q = 0 , w —> 0) in the Sm A phase of ferroelectric liquid crystal DOBAMBG. The 
observed real part of the susceptibility clearly followed the Curie law at T  > Tc

X'{q = 0, u) 0) oc T _ Tc + (K 3 g2 f a } > T > Tc (4?)

and saturated very near the transition temperature Tc. This is consistent with the 
expected behavior of a system, where the soft mode condenses at a nonzero wave 
vector, i.e. whenever we have a second order phase transition into an ordered and 
spatially inhomogeneous system.



2346 I. M uSevic e t at.

Fig. 14. Splitting o f  the soft mode into the amplitudon and phason modes near the Sm A —»Sm C* 
transition in a ferroelectric liquid crystal 4-(2’-methylbutyl)phenyl 4 ’-n-octylbiphenyl-4-carboxy- 
late (CE-8), see I. Drevensek et a/.33 The scattering wave vector is noncritical, qs ^ qc, which 
results in finite relaxation rates at Tc ,

The dynamical properties of ferroelectric liquid crystals in the vicinity of the Sm 
A—>Sm C+ phase transition became a subject of renewed interest in the late 80’s. A 
series of dielectric dispersion32 and light scattering experiments33 were performed 
at that time which clarified the nature of the order parameter excitations near the 
Sm A —> Sm C* phase transition. In particular, in the quasielastic light scattering 
experiments33 a splitting of the soft mode branch into the amplitudon and phason 
dispersion branches was observed, as shown in Fig. 14. Moreover, it was observed 
that the soft mode dispersion branch is centered at q ^ 0 for T  > Tc.33 This is an 
indication that the soft mode freezes off-center in the reciprocal space.

Quasielastic light scattering experiments performed in the Sm C* phase revealed 
for the first time33 the existence of a gapless phason dispersion branch, which is ex
pected whenever the continuous symmetry group is broken at the phase transition 
point. The phason dispersion, as observed in DOBAMBC,33 is shown in Fig. 15. 
One can see that the dispersion is centered at q /  0, which is characteristic of inho
mogeneous systems. In the center of the dispersion, the observed phason relaxation 
rates are indeed very low, i.e. of the order of 10 Hz. The Goldstone mode, which 
is a phason mode with the wave vector in the center of the dispersion, is really a 
nearly zero-frequency mode. Recently, the study of the phason modes in modu
lated smectic phases has been extended to the recently discovered antiferroelectric 
Sm C^ 34 and ferrielectric Sm C* phases.35 Whereas the existence of a gapless Gold- 
stone excitation was confirmed by the quasielectric light scattering experiments in 
the antiferroelectric phase34 (see the inset to Fig. 15), its existence in ferrielectric 
phases is still controversial.
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Fig. 15, Phason dispersion in the ferroelectric liquid crystal DOBAM BC.33 The inset shows the  
phason dispersion in the antiferroelectric phase of the liquid crystal MHPOBC.34

The observed structure and temperature dependence of the spectrum of the order 
parameter excitations in the vicinity of the Sm A—>Sm C* phase transition in the 
unperturbed ferroelectric liquid crystal are in general agreement with the predictions 
of a Landau theory. Here, the generalized Landau model does not qualitatively alter 
the structure of the order parameter excitation spectrum but merely introduces a 
temperature dependence, which reflects the temperature dependence of the period 
of the helix of the ferroelectric structure.

6. S ym m etry  B reaking by E x terna l Fields

When an external magnetic field is applied perpendicular to the helical axis of a 
ferroelectric liquid crystal, it distorts the helical arrangement of liquid crystalline 
molecules and induces a so-called soliton-like structure, for fields lower than the 
critical field Hc. This distortion of helical structure breaks the continuous helical 
sym m etry  of the unperturbed Sm C* phase, as can be easily seen by considering 
the symmetry properties of the unperturbed and distorted Sm C* phases. In the
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unperturbed Sm C* phase any infinitesimal translation of the structure along the 
2-axis can be combined with a suitable infinitesimal rotation around the 2-axis to 
transform the system into itself. The unperturbed Sm C* phase has thus a char
acteristic continuous helical symmetry. On the contrary, the distorted Sm C* 
phase is invariant under a group of discrete transformations , i.e. it is trans
formed into itself by a translation over half a period po along the 2-axis, followed 
by a 180° rotation around the helical axis.

This symmetry breaking by external fields has some deep and fundamental con
sequences for the spectrum of the order parameter excitations in ferroelectric liquid 
crystals. Here we shall discuss the magnetic-field effects on the phason excitation 
spectrum only, although similar phenomena can be expected for the behavior of 
the soft and amplitudon excitations as well. Many interesting consequences of the 
symmetry breaking by external fields can be understood by simply using symme
try arguments and analogies to other systems. For example, in the unperturbed 
Sm C* phase, the phason excitations which propagate along*the helical axis exhibit 
a plane-wave behavior with a gapless and parabolic dispersion relation. Phason 
excitations are here just twist-bend-like elastic distortion waves, superposed onto 
the helical structure. When such an excitation propagates along the helix, it “sees” 
a smooth and uniformly twisted structure. All points of the helix are thus equiv
alent with respect to such an excitation, which results in the plane-wave nature 
of phason propagation in the unperturbed helix. However, when such a phason 
propagates in a magnetic-field distorted structure, it “sees” a regular and periodic 
array of 7r-soliton walls, resulting from the magnetic field induced breaking of the 
helical symmetry. This soliton-wall lattice, in combination with the coupling of the 
excitation to the external magnetic field, thus results in a periodic perturbation, 
experienced by the phason as it propagates along the distorted helix.

The dynamics of a phason excitation in a soliton-like distorted Sm C* phase is 
thus analogous to the motion of a particle in an external periodic potential, which 
is a well-known and well understood problem. As a result of the presence of the 
periodic potential, the concept o f a Brillouin zone (BZ) has to be introduced, 
whereas the excitation eigenfunctions obtain the Bloch form. Perhaps the most 
striking consequence of the symmetry breaking by the external fields is the ap- 
pearence o f band gaps G(q) in the excitation spectrum w(q,p), which becomes 
a periodic function in the reciprocal space, as shown schematically in Fig. 16.

The influence of an external magnetic field on the phason dispersion relation 
can be analytically calculated in the constant amplitude approximatio, thus ne
glecting the amplitudon contribution to the nonequilibrium free energy expansion. 
By writing the order parameter £(zyt)

£x(z>t) = 9 cos § (z}t ) , £y(2, t) = # sin $(2,£), (48)

where 9 is the equilibrium tilt angle and $ (2, t) is the phase of the order parameter, 
the phase-dependent part of the free-energy density 5(2, t) of the Sm C* phase in
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a) H=0

CONTINUOUS SYMMETRY

b) H < H c 

DISCRETE SYMMETRY

Fig. 16. C rossover from the  continuous to  the  band s tru c tu re  of th e  phason dispersion relation , as 
a  resu lt of a  sym m etry breaking by an  external m agnetic field. T he figure is schematic.

an external magnetic field H =  (0, H , 0) is

ffCM) =  - A »2 + ~ sin2 «K M ). (49)

The dynamics of small phase fluctuations 8 $(z tt) around the equilibrium phase 
$o(*) (see Eq. (13))

$ (M ) =  # 0(*) + i* (* ,t) (5°)

is analyzed within the framework of Landau-Khalatnikov dynamical equations. 
This leads to the over damped form of the phason excitations (see also Eq. (38))

(51)

where r =  r(H) is the relaxation rate of the phason. The form of the eigenfunction 
vf(z ) is governed by the Lame’s equation of order one36

du2
+ h — 2 k2 sn2(-u, fc)j #  =  0 . (52)

Here, h =  k2 \^2 ^l(r(H)Kz  +  1] is the eigenvalue, 7 is the rotational viscosity, 
£ =  \ /K z l ( A x H 2) is the coherence length and sn(uyk) is the Jacobian sine 
amplitude with the argument u = zj(£k) and modulus fc, which is determined 
by the magnitude of the magnetic field, see Eq. (15).

The Lamp’s equation of order one is exactly equivalent to the Schrödinger equa
tion describing the propagation of a particle in a periodic soliton-like potential

V(u) = —2 k2 sn2(it, k) (53)
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The magnitude of this periodic potential is equal to —2k2 and is in the limit of 
small field proportional to H 2. Thus for H = 0, V^u) =  0 and we are in the 
plane-wave regime. For H  ^ 0 the periodic potential induces a band like structure 
of the phason spectrum with band gaps at the edges of the Brillouin zone. As 
is well-known, in the limit of small perturbation, the magnitude of the resulting 
gap G(H) is proportional to the amplitude of the corresponding Fourier component 
Vk of the periodic potential. In our case this is proportional to the square of the 
magnetic field, G(H) oc H 2. Detailed analysis of the spectrum of the eigensolutions 
and eigenvalues of the Lamp’s equation shows that the eigensolutions §(u) are given 
in a form of Bloch waves and can be calculated analytically.37 The wave vector q is 
ascribed to the particular eigensolution

*(») * ,(« ) (54)

on the basis of the translational symmetry of this eigensolution.37 Moreover, since 
the eigenvalues h of the Lame’s equation determine the relaxation rate r~ l (H) 
of the particular eigensolution the dispersion relation r " 1 (q,H) for phasons 
propagating in a soliton-like lattice can be calculated analytically. This shows a 
surprising result, because only one forbidden gap G(H) appears in the phason 
spectrum, separating the so-called optic-like branch from the acoustic-like exci
tation branch. This is in sharp contrast to the usually large number of forbidden 
gaps, which appear for example in the band theory of solids. The reason for this 
surprising result is the form of the periodic potential term V(u) oc —sn2 (u}k), which 
was discussed in early work of Landau38 and later by B. Sutherland39 and by R. A. 
Cowley and A. D. Bruce.40 This potential is peculiar in the sense that it exhibits a 
single bound state and a semicontinuum of free states, separated by a single gap.

The width of the Brillouin zone is determined by the period of the potential 
term V(u) which is p(H)/2  and is field-dependent. This means that the reciprocal 
lattice vector equals to [Kj =  and the corresponding Brillouin zone
is (—̂  j =  (“ </c > +<7c)* It should be stressed that the phason excitation, as
introduced by Eq. (22), implies the use of a helical reference frame. As a conse
quence, the excitation with a wave vector q in a helical reference frame is observable 
as an excitation with a wave vector q ±  qc in the laboratory frame. This has the 
consequence that the Brillouin zone is shifted by ±gc and the zone boundaries and 
the band gap G(H) are situated at q ~  0 in the laboratory system.

The analysis of the eigenfunctions of the Lamp’s equation shows that there 
are three distinct eigenfunctions  with three distinct eigenvalues. At the edges 
of the Brillouin zone there are two real solutions which have the form of the 
Jacobian sine  and cosine amplitudes, respectively. Their relaxation rates show 
reverse field-behavior: whereas the relaxation rate of the first eigensolution increases 
with increasing field, the relaxation rate of the second eigensolution decreases with 
increasing field, as shown in Fig. 17,

* i(u )  =  sn(ti, k) : T+'Cff) =  —  4  t f 2 , (55a)7 K
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H/Hc

Fig, 17. Magnetic field dependencies of the relaxation rates of the optic-like r ^ 1 and the acoustic
like phason r -1  at the edges o f the Brillouin zone, as calculated from the Eqs. (55a) and (55b).

$ 2(tt) =  cn(u,fc) : r r 1^ ) ^ — (55b)
7  K*

The magnetic-field induced gap is thus proportional to the square of the applied 
field

G(H) = r+1 ( H ) - tZ \ H )  = ^ H 2 . (56)
7

The third distinct eigensolution is obtained in the center of the Brillouin zone. It is 
given in a form of the Jacobian delta amplitude dn(w, k) and has a zero relaxation 
rate fo r  all fields below Hc

M  =  dn(u,k) : 0 . (57)

It is interesting to see what is the physical interpretation of these eigenfunctions. 
The first one (Eq. (55a)) has the nodes in the center of the domain walls and 
represents the fluctuations of the shape of the domain walls. The eigensolution 
^ t o  has the nodes in the middle of two neighboring domain walls and represents 
coherent, out-of-phase motion of the domain walls. The third eigensolution, $ 3(14), 
is the Goldstone mode and represents the sliding of the helix as a whole along the 
z-direction. It is interesting to note that in the presence of the field the sliding of 
the helix is not any more equivalent to a rotation of the helix, as we have noted 
in the discussion of the gapless phason in an unperturbed helix. It is also very 
indicative that the Goldstone mode, which is a zero frequency symmetry restoring 
mode, exists in the distorted Sm C* phase as well.
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Fig. 18. The dispersion of the acoustic-Hke phason branch as determined in the Sm C* phase 
of a  35%:65% mixture o f a chiral and racemic 4-(2’-methylbutyl)phenyl 4 ,-n-octylbiphenyl-4- 
carboxylate (CE-8) for different magnetic fields at Tc — T  =  3 I<. The critical field is 8 T  and 
the solid lines are the best parabolic fits.36'37

The first observation of the magnetic-field induced splitting of the phason exci
tation was reported in a quasielastic light scattering experiment in high magnetic 
fields.36 The observed dispersions of the acoustic phason branch in a mixture of chi
ral and racemic 4-(2'-methylbutyl)phenyl 4'-n-octylbiphenyl-4-carboxylate (CE-8) 
at H  = 0, H  — 6.0 T, H  =  6.65 T and H  =  8.1 T are shown in Figs. 18a, b, c and 
d, respectively. The critical magnetic field in this material was approximately 8 T, 
and depended slightly on the sample used in the experiment. One can observe the 
decrease of the phason relaxation rates at small wave vectors, which is characteris
tic of the acoustic-like phason modes at the edge of the BZ. At the same time, the
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dispersion is slightly shifted towards smaller wave vectors, indicating the shrinking 
of the BZ. Slightly above the critical field, see Fig. 18d, the dispersion is centered at 
q = 0 and shifted to higher frequencies. This indicates a phase transition from the 
modulated phase, where the center of the dispersion is at a finite wave vector, into 
the homogeneous phase, where the dispersion is centered at q — 0. The magnetic 
field dependence of the optic-like phason modes at the edge of the BZ could not 
be determined by the quasielastic light scattering because of the small scattering 
intensity from the modes. Therefore dielectric spectroscopy was used in the exper
imental geometry, where only the optic-like phason modes at the edge of the zone 
contribute to the response of the system. The resulting magnetic-field dependencies 
of the phason relaxation rates together with a fit to the theoretical predictions are 
shown in Fig. 19 and clearly show the magnetic field induced splitting of the phason 
spectrum. The resulting gap G(H) is shown in Fig. 20 up to the highest available 
field of 14 T and shows an excellent agreement with theoretical predictions.

A particularly interesting issue of the observed magnetic-field dependencies of 
the phason relaxation rates is the disappearance of the zero-frequency Goldstone 
mode beyond the critical magnetic field Hc. It turns out that this has a very 
fundamental origin in the spontaneous breaking of the point symmetry of the Sm 
A phase. At zero field, both the continuous rotational symmetry group D,*, as 
well as the continuous translation symmetry of the Sm A phase is broken, which 
is the reason for the existence of a zero-frequency symmetry restoring Goldstone 
mode. For fields below the Lifshitz fieldt the Sm A—>Sm C* phase transition 
is accompanied by the breaking of the discrete symmetry D2 into C2, but at the

HIT)

Fig. 19. Magnetic-field dependencies o f the normalized relaxation rates of the acoustic-like and 
the optic-like phason modes in the Sm C* phase of a 35%:65% mixture of a chiral and racemic 
4-(2 ’-m ethylbutyl)phenyl 4 ’-n-octylbiphenyl-4-carboxylate (CE-8) at Tc — T  =  3 K  and q =  0. The 
solid lines are the best fits to Eqs. (55a) and (55b), respectively.36’37
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H2(T2}

Fig. 20. Magnetic field dependence of the phason band gap in the Sm C* phase of a 35%:65% 
m ixture of a chiral and racemic 4-(2’-methylbutyl)phenyl 4*-n-octylbiphenyl-4-carboxylate (CE-8) 
at Tc — T  = 3 K and q — 0. The solid line is the best fit to the Eq. (56).36'37

same time the continuous translation symmetry of the Sm A phase is broken into the 
discrete translation symmetry  of the soliton-like distorted Sm C* phase. Thus, 
the Goldstone mode is still expected to exist and it should appear in a form of a 
sliding translational wave, which tries to restore the broken translational symmetry 
of the Sm A phase. Finally, beyond the Lifshitz field Hi  only a discrete point 
symmetry is broken at the Sm A—»Sm C phase transition and a zero frequency 
mode should not exist.

Let us conclude the discussion of symmetry breaking and collective excitations 
with some remarks on the effects of external electric fields. For high frequency AC 
fields, which couple to the dielectric anisotropy tensor quadratically, the effect on 
the spectrum of collective excitations is expected to be exactly equivalent to the 
magnetic field effects. In this case, the splitting of the phason spectrum appears at 
q = 0 and should thus be observable, for example, with the dielectric spectroscopy 
in two different experimental geometries, as shown in Sec. 7. The effect of a DC 
field, which couples linearly to the polarization, is quite different. First, instead of 
a 7r-soliton lattice we have here a 27r-soliton lattice. As a result, the period of the 
perturbation for phason propagation which has its origin in the formation of soliton 
walls is equal to the period p(E) of the helix in the case of an applied electric field. 
This is quite different from the magnetic field, where the period of the perturbation 
is equal to p(H )/2. As a result, the size of the Brillouin zone is two times smaller 
in the case of a DC electric field than in the case of a magnetic field. Following 
a simple construction of the Brillouin zone, we see that in an external DC electric 
field the band gaps appear outside the center of the reciprocal lattice, i.e. at the
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wave vector qc/2. Consequently, the phason splitting cannot be observed with 
dielectric spectroscopy in a D C  field, but can be observed in a quasielectric 
light scattering experiment. For a more detailed elaboration of this problem see 
Ref. 37.

7. Q uasielastic  L ight S cattering  and  O ptically D etected  D ielectric
Spectroscopy

In the ferroelectric Sm C* liquid crystal, collective excitations of the order parameter 
£(r, t) are strongly coupled to the dielectric tensor field e(r, t) and the spontaneous 
polarization field P(r>¿). In an experiment they are thus observable as collective, 
spatially correlated reorientations of the optical axis or the dipole moment, respec
tively. The relaxation rates of the order parameter excitations are in the range from 
10 Hz to 1 MHz, and can relatively easily be observed in quasielastic light scattering 
experiments and in dielectric spectroscopy. Whereas the quasielastic light scatter
ing allows for the determination of the dispersion relations r -1 (q) for the order 
parameter excitations, dielectric spectroscopy measures the response of the system 
at the wave vector q =  0.

Quasielastic light scattering, or Rayleigh scattering spectroscopy, is a  well-known 
optical spectroscopic method, which is very useful for the study of elementary ex
citations in liquid crystals. Because of extremely large optical birefringencies and 
very low relaxation rates, the orientational fluctuations in liquid crystals scatter 
light strongly. Light scattering in liquid crystals can be as high as a million time 
stronger than in optically isotropic liquids. In the quasielastic light scattering ex
periment one measures the time correlation of the intensity of scattered light at 
different scattering wave vectors. This allows the determination of the thermally 
excited dynamics of the system under study. The quasielastic light scattering in 
liquid crystals thus plays a similar role as the inelastic neutron scattering in the 
study of phonon excitations in solid crystals. The magnitude of the scattering wave 
vectors which are accessible in a light scattering experiment depends on the scat
tering geometry and the wavelength of the laser light. We can thus probe the most 
interesting interval in the reciprocal space (i.e. the first BZ of the Sm C* phase) by 
a proper selection of the scattering geometry. The magnitude of the BZ can also be 
adjusted by mixing right- and left-handed enantiomers to 1-10 / i n r 1, the inverse 
of which falls with the range of accessible laser sources.

There is, however, one important difference between neutron scattering in solids 
and light scattering in liquid crystals, which originates from the extremely high 
optical anisotropies of liquid crystals. Liquid crystalline phases are optically uniaxial 
or biaxial materials with exceptionally large birefringence of the order of An  «  0.1- 
0.2. This birefringence is orders of magnitude larger than in other materials. In 
spatially homogeneous liquid crystalline phases such as N, Sm A and Sm C, light 
can propagate as an ordinary or an extraordinary linearly polarized wave. These 
waves are scattered from thermally excited fluctuations of the dielectric tensor and
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the scattered light can again propagate as an ordinary or extraordinary wave. In 
liquid crystals, an ordinary wave can thus be scattered into an extraordinary (o-e 
scattering) or an ordinary wave (o-o scattering), respectively. The situation with 
the extraordinary wave is similar, so that light scattering in liquid crystals is strongly 
polarization dependent.

In the first order approximation, which is expected to be valid far from degera- 
tion points, the helicoidal Sm C* phase is treated as a slightly perturbed optically 
uniaxial crystal. The eigenwaves of light propagation are linearly polarized ordinary 
|k ,< r )  and extraordinary [ k ',7 r )  waves, with the wave vectors k  and k '  and polariza
tions <7 and 7T, respectively. Thermal excitations of the order parameter field £(r, t) 
result in the fluctuations of the dielectric tensor field

£(r > ¿) — £o(r) + ¿£(r, t) ^  e(r,¿) =  € (r)+ 5 e(rf¿). (58)

Here, e(r) denotes the time average tensor, whereas 6£(z}t) = (6^e(zti ) , ££$(2,i)) 
is the deviation of the order parameter from the equilibrium, which scatters light 
quasielastically. In a scattering process, the incident light with wave vector k  and 
polarization p is scattered from thermal fluctuation 5e(r, t) into a light wave with 
wave vector k  and polarization p'.

In the limit of small 0, the fluctuating part of the dielectric tensor Se(z, t) is 
derived from Eq. (26) in terms of the nonequilibrium order parameter as

6e{z,t) oc(e3 -  ei)

+  (̂ 3 — ei)

0 0 cos$o(¿)
0 0 sin$o(¿)

.cos^o(^) sin$o(^) 0

0 0 - s in  $ 0(2)
0 0 cos $ 0(2)

. -  sin $ 0(z) cos $ 0(2) 0 (59)

Here, 6£o and represent the amplitudon and the phason excitations respectively, 
and $o(^) is the equilibrium phase profile. From the above expression we see that 
the excitations of the order parameter can indeed be observed as the excitations of 
the dielectric tensor field 6e(z} t)

6exz{z> t) oc (e3 -  d )  cos(gc2) -  sin(gc*)] =  (e3 -  €1) 6£x(z} t) , (60)

6ayz{z> i) oc (e3 -  ei) sin(gc¿) + cos(gc¿)] =  (e3 -  ¿1) 6£y(z, t ) . (61)

The fluctuations of the off-diagonal terms are thus observable as a strong depolarized 
scattering between the ordinary and extraordinary waves or vice versa.
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Following the standard approach41 to the scattering of a monochromatic plane 
wave with polarization i, wave vector k*, frequency w, and amplitude Eq

E{ — i Eq eiVi*~iWit (62)

from the fluctuations of the dielectric tensor <5e(r, £), the projection of the scattered 
electric field amplitude f . Es at a distance R  from the sample is

£„(R , i) = f-  E .(R , t) =  t ) . (63)

Here, qs is the scattering wave vector, q8 = k,- — k /, and

Sdfiq, t) -  ƒ dz r {f • (6e(z> t)) * i} e‘qsr (64)

is the Fourier transform of the fluctuating part of the dielectric tensor, projected 
onto the polarizations i and f of the incoming and the scattered beam, respectively. 
In a light scattering experiment, the time autocorrelation function

rp

G(2)( t)  = {1(0) /(r)> =  lim ^  f  dt I(t) I(t +  r)  (65)OO I Jq

of the scattered light intensity I(t) is detected. Usually, a small portion of a co
herent, elastically scattered field is mixed with the quasielastically scattered 
field ES) so that the experiment is in the so-called heterodyne regime. In this case, 
G<2>( r )  is proportional to the autocorrelation function of the Fourier component of 
the dielectric tensor field

G(2)(r) ~  R e {{^ i/(qSf0) ie ^ q ^ r ) } }  . (66)

In the case of scattering of ordinary polarized light, i =  (0,1,0), into extraordinary 
polarized light, f  =  (sina,0 ,cosa), the projection 8tif(zyt) is

f 8e(z, t) i ~  (e3 -  ei) [ cos $ 0 8&(z, t ) +  sin $ 08£e(z> ¿)J ~  S ^ z ,  t ) . (67)

The scattering amplitude in this geometry is thus proportional to the 6£y component 
of the order parameter, which is in turn proportional to the phase and amplitude 
fluctuations (see Eq. (60)).

In the unperturbed Sm C+ phase, $ 0(2) =  QcZy and the order parameter exci
tations (2, t) = S£l cos(qz + <f>i) e~lfT are plane waves with wave vector q. The 
Fourier component $ei/(qSi t) at the scattering wave vector qs is nonzero if the wave 
vector of the excitation equals

q — dtqB ±  qc (68)
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The corresponding autocorrelation function of the scattered light intensity G ^ ( r ,  
qa) in the heterodyne regime then consists of two distinct, exponentially decaying 
contributions from the phason and the amplitudon excitations, respectively

G(2,( t ,9s) =: t)6($(q , t + r)) + (S(„(q, t) S(g(q,t + r ))

=  t))2) e - f ' *  +  <(«#(,, t))2) ■ (69)

Here, ((¿CfOM))2) is the mean square amplitude of the phason and the ampli
tudon excitation, respectively. The quasielastic light scattering experiment should 
thus allow the determination of both relaxation rates. In practice, the situation is 
somewhat complicated in view of the large differences in the relaxation rates of the 
amplitude and phase modes which result in large differences in the corresponding 
scattering amplitudes. The amplitudon modes, which have much higher relaxation 
rates, have correspondingly smaller amplitudes and are more difficult to observe.

Similar analysis can be performed in the case of a distorted Sm C* phase. Here 
the equilibrium phase equals sin $ 0(2) =  sn and the eigenfunctions ¿£¿(2) 
have the form of Bloch waves. This results in a slightly modified condition for the 
nonzero Fourier component of &,•ƒ(<?,£) for a given excitation

q = ±qs ± m * q c ; for m  integer. (70)

Whereas the condition (Eq. (68)) for the observation of the order parameter excita
tions in the unperturbed Sm C* phase can be interpreted as the shift of the original 
BZ by the reciprocal vector dbqCi the above condition reflects the periodicity of the 
dispersion relation in the reciprocal lattice of a distorted Sm C* phase.

In contrast to the quasielastic light scattering spectroscopy which allows for the 
determination of the dispersion relation of the order parameter excitations, the di
electric spectroscopy is a very useful probe for determining the susceptibilities of 
the soft, amplitude and phase modes at q — 0. This method suffers an inherent de
ficiency of probing a rather thin book-shelf aligned sample with a large surface area. 
Such a restricted planar geometry can in principle induce such a band structure of 
phason excitations via the surface-induced deformation of the helical structure.

This problem can be circumvented by an optical detection of the linear response 
of the Sm C* phase to a small external field.42 This technique can be used in book
shelf as well as homeotropically aligned smectic phases. A small in-plane external 
electric field E0 eiwt is applied to the homeotropic aligned Sm C* phase. This field 
couples linearly to the spontaneous polarization P  and induces a phase distortion 
6<f>{z) with the amplitude

« # * ) =  ¿0 sinfac*) =  - T + T f f i j  Sin(,' Z)' (71)

The electric field thus couples to the phason mode at the edge of the Brillouin zone. 
Here, Pq and 6 are the magnitudes of the spontaneous polarization and the tilt
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angle, respectively. The induced phase distortion 6<j>(z) is reflected in the distortion 
of the dielectric tensor for the optical frequencies used. In the limit of small tilt 
angle, thus neglecting terms of the order of 02 in 8e(r), the space periodic part of 
the dielectric tensor changes under the influence of the measuring electric field

6e(z)
0 0 cos($o(¿0 +  $4>)
0 0 sin($o(^) + ¿0)

cos($o(¿) + 6if>) sin($oCz) +  $<f>) 0
(72)

As we have shown, at small tilt angles, the first order approximation to be valid and 
the apace averaged dielectric tensor  (e(r)} determines the optical properties of 
the Sm C* phase. After linearizing Se(z) in 6(f>(z), the space averaged dielectric 
tensor of the Sm C* phase, perturbed by a small electric field, is

a 0 6 
0 a 0 
6 0 b

(73)

Here, a = ei +  |( e 3 — ei) sin2 0, b =  ei 4- (¿3 — €1) cos2 9 and

(74)

The influence of a small external field to the average dielectric tensor is shown in 
the ¿-term, which is field-dependent via $0(E). As a result of a small external 
field, nonzero, off-diagonal terms appear in the dielectric tensor. This form of the 
dielectric tensor can be obtained by rotating the originally diagonal dielectric tensor 
with the principal values ei = €2 — a and €3 = 6 around the y-axis, i.e. around 
the electric field direction. The phase distortion, as induced by the external field, 
thus results in  a small rotation o f  the effective dielectric tensor , which 
represents a small rotation of the optical axis around the direction of the external 
field. The angle of the rotation 77 of the optical axis is in the limit of a small 
distortion proportional to the external field

1 (75)

and can easily be detected by an optical interferometric technique. Rom the fre
quency dependence of the linear electrooptic response, one can determine the re
laxation rate q2 of the phason mode at the edge of the BZ of the Sm C* phase.

A similar analysis can also be applied to the linear response of a magnetic-field 
distorted helicoidal Sm C* phase, with some particular differences. First, the single 
mode at the edge of the BZ splits into an acoustic and optic-like mode, and sec
ond, in view of the periodicity of the phason dispersion relation, an infinite number
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of higher-frequency optic-like modes should appear at the BZ. The relaxation fre
quencies of these higher-frequency modes which originate from the neighboring BZ 
are typically one order of magnitude higher than the relaxation frequency of the 
two lowest modes and can be neglected in view of their small contribution to the 
response of the system.

The contributions of the acoustic-like and lowest lying optic-like mode to the 
electrooptic response of a distorted helicoidal structure can be calculated from the 
free-energy density, which includes the electric polarization terms (Eq. (3)). This 
analysis can be simplified by considering the electric polarization properties 
o f  the phason excitations at the edge of the BZ. The relation between the 
fluctuation of the tilt order parameter £{z,t) and the polarization P(¿,¿) can be 
derived from the free-energy expansion (Eq. (4))

6 P x = €pt^ k - t C 6 t y t (76a)

8 Py = efi + eC 8£x . (76b)

The space-averaged spontaneous polarizations (P) of each mode at the edge of the 
BZ that are relevant for the linear response of the system at q ~  0 are:

The acoustic mode : (¿P®) oc eC{cn2(«,&)) ^  0, (77a)

<Fy) =  0- (77b)

The optic mode : (8PX) ~  0, (78a)

(8Py} oc € C{sn2(u, k)) 0. (78b)

Because the magnetic field is applied in the ^/-direction, we observe from the above 
equations that the acoustic mode represents a collective excitation with (P)XH, 
whereas for the optic mode (P) [j H. The above relations thus enable a selective 
probing of either the optic or the acoustic-like mode via the polarization-selective 
rules.
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