81 research outputs found
Lévy stable distributions for velocity and velocity difference in systems of vortex elements
The probability density functions (PDFs) of the velocity and the velocity difference field induced by a distribution of a large number of discrete vortex elements are investigated numerically and analytically. Tails of PDFs of the velocity and velocity difference induced by a single vortex element are found. Treating velocities induced by different vortex elements as independent random variables, PDFs of the velocity and velocity difference induced by all vortex elements are found using limit distribution theorems for stable distributions. Our results generalize and extend the analysis by Takayasu [Prog. Theor. Phys. 72, 471 (1984)]. In particular, we are able to treat general distributions of vorticity, and obtain results for velocity differences and velocity derivatives of arbitrary order. The PDF for velocity differences of a system of singular vortex elements is shown to be Cauchy in the case of small separation r, both in 2 and 3 dimensions. A similar type of analysis is also applied to non-singular vortex blobs. We perform numerical simulations of the system of vortex elements in two dimensions, and find that the results compare favorably with the theory based on the independence assumption. These results are related to the experimental and numerical measurements of velocity and velocity difference statistics in the literature. In particular, the appearance of the Cauchy distribution for the velocity difference can be used to explain the experimental observations of Tong and Goldburg [Phys. Lett. A 127, 147 (1988); Phys. Rev. A 37, 2125, (1988); Phys. Fluids 31, 2841 (1988)] for turbulent flows. In addition, for intermediate values of the separation distance, near exponential tails are found
Global Diffusion in a Realistic Three-Dimensional Time-Dependent Nonturbulent Fluid Flow
We introduce and study the first model of an experimentally realizable
three-dimensional time-dependent nonturbulent fluid flow to display the
phenomenon of global diffusion of passive-scalar particles at arbitrarily small
values of the nonintegrable perturbation. This type of chaotic advection,
termed {\it resonance-induced diffusion\/}, is generic for a large class of
flows.Comment: 4 pages, uuencoded compressed postscript file, to appear in Phys.
Rev. Lett. Also available on the WWW from http://formentor.uib.es/~julyan/,
or on paper by reques
Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces
Reproducing kernel Hilbert spaces (RKHSs) play an important role in many
statistics and machine learning applications ranging from support vector
machines to Gaussian processes and kernel embeddings of distributions.
Operators acting on such spaces are, for instance, required to embed
conditional probability distributions in order to implement the kernel Bayes
rule and build sequential data models. It was recently shown that transfer
operators such as the Perron-Frobenius or Koopman operator can also be
approximated in a similar fashion using covariance and cross-covariance
operators and that eigenfunctions of these operators can be obtained by solving
associated matrix eigenvalue problems. The goal of this paper is to provide a
solid functional analytic foundation for the eigenvalue decomposition of RKHS
operators and to extend the approach to the singular value decomposition. The
results are illustrated with simple guiding examples
On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics
The concept of isochrons is crucial for the analysis of asymptotically periodic systems. Roughly, isochrons are sets of points that partition the basin of attraction of a limit cycle according to the asymptotic behavior of the trajectories. The computation of global isochrons (in the whole basin of attraction) is however difficult, and the existing methods are inefficient in high-dimensional spaces. In this context, we present a novel (forward integration) algorithm for computing the global isochrons of high-dimensional dynamics, which is based on the notion of Fourier time averages evaluated along the trajectories. Such Fourier averages in fact produce eigenfunctions of the Koopman semigroup associated with the system, and isochrons are obtained as level sets of those eigenfunctions. The method is supported by theoretical results and validated by several examples of increasing complexity, including the 4-dimensional Hodgkin-Huxley model. In addition, the framework is naturally extended to the study of quasiperiodic systems and motivates the definition of generalized isochrons of the torus. This situation is illustrated in the case of two coupled Van der Pol oscillators. © 2012 American Institute of Physics
Data-driven analysis and forecasting of highway traffic dynamics
AbstractThe unpredictable elements involved in a vehicular traffic system, like human interaction and weather, lead to a very complicated, high-dimensional, nonlinear dynamical system. Therefore, it is difficult to develop a mathematical or artificial intelligence model that describes the time evolution of traffic systems. All the while, the ever-increasing demands on transportation systems has left traffic agencies in dire need of a robust method for analyzing and forecasting traffic. Here we demonstrate how the Koopman mode decomposition can offer a model-free, data-driven approach for analyzing and forecasting traffic dynamics. By obtaining a decomposition of data sets collected by the Federal Highway Administration and the California Department of Transportation, we are able to reconstruct observed data, distinguish any growing or decaying patterns, and obtain a hierarchy of previously identified and never before identified spatiotemporal patterns. Furthermore, it is demonstrated how this methodology can be utilized to forecast highway network conditions.</jats:p
Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics
For asymptotically periodic systems, a powerful (phase) reduction of the dynamics is obtained by computing the so-called isochrons, i.e. the sets of points that converge toward the same trajectory on the limit cycle. Motivated by the analysis of excitable systems, a similar reduction has been attempted for non-periodic systems admitting a stable fixed point. In this case, the isochrons can still be defined but they do not capture the asymptotic behavior of the trajectories. Instead, the sets of interest - that we call " isostables" - are defined in the literature as the sets of points that converge toward the same trajectory on a stable slow manifold of the fixed point. However, it turns out that this definition of the isostables holds only for systems with slow-fast dynamics. Also, efficient methods for computing the isostables are missing. The present paper provides a general framework for the definition and the computation of the isostables of stable fixed points, which is based on the spectral properties of the so-called Koopman operator. More precisely, the isostables are defined as the level sets of a particular eigenfunction of the Koopman operator. Through this approach, the isostables are unique and well-defined objects related to the asymptotic properties of the system. Also, the framework reveals that the isostables and the isochrons are two different but complementary notions which define a set of action-angle coordinates for the dynamics. In addition, an efficient algorithm for computing the isostables is obtained, which relies on the evaluation of Laplace averages along the trajectories. The method is illustrated with the excitable FitzHugh-Nagumo model and with the Lorenz model. Finally, we discuss how these methods based on the Koopman operator framework relate to the global linearization of the system and to the derivation of special Lyapunov functions. © 2013 Elsevier B.V. All rights reserved
Corrigendum to “Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics” [Physica D 261 (2013) 19–30]
- …
