4,723 research outputs found

    Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate

    Full text link
    We investigate freezing characteristics of a finite dipolar hexagonal plate by the Monte Carlo simulation. The hexagonal plate is cut out from a piled triangular lattice of three layers with FCC-like (ABCABC) stacking structure. In the present study an annealing simulation is performed for the dipolar plate uniaxially compressed in the direction of layer-piling. We find spin melting and refreezing driven by the uniaxial compression. Each of the melting and refreezing corresponds one-to-one with a change of the ground states induced by compression. The freezing temperatures of the ground-state orders differ significantly from each other, which gives rise to the spin melting and refreezing of the present interest. We argue that these phenomena are originated by a finite size effect combined with peculiar anisotropic nature of the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer

    Full text link
    Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table

    IGBT chip current imaging system by scanning local magnetic field

    Get PDF
    An IGBT / power diode current distribution imaging system was demonstrated. This system can capture current redistribution or oscillation inside or among chips on a DBC-level sub-module. It can perform failure analysis of power semiconductors by detecting problems such as nonuniform current distribution between bonding wires. The system scans the chip’s shape using a laser sensor and then records the local magnetic field near the bonding wire using a 4-axis robot coil sensor. The coil sensor has two pair of Cu patterned spiral coils symmetrically arranged on both sides of a 60-μm-thick polyimide film. The system enables the analysis of destructive current concentrations of the entire chip, among chips or a part of the chip under high current or high voltage switching conditions, without making any changes or disassembling the chip connections.24th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis. Schedule, September 30-October 4, 2013, Venue, Arcachon, Franc

    SMA/PdBI multiple line observations of the nearby Seyfert2 galaxy NGC 1068: Shock related gas kinematics and heating in the central 100pc?

    Full text link
    We present high angular resolution (0.5-2.0") observations of the mm continuum and the 12CO(J=3-2), 13CO(J=3-2), 13CO(J=2-1), C18O(J=2-1), HCN(J=3-2), HCO+(J=4-3) and HCO+(J=3-2) line emission in the circumnuclear disk (r=100pc) of the proto-typical Seyfert type-2 galaxy NGC1068, carried out with the Submillimeter Array. We further include in our analysis new 13CO(J=1-0) and improved 12CO(J=2-1) observations of NGC1068 at high angular resolution (1.0-2.0") and sensitivity, conducted with the IRAM Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central ~100pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC1068 is radially blown outwards as a result of shocks. This shock scenario is further supported by quite warm (Tkin>=200K) and dense (nH2=10^4cm^-3) gas constrained from the observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[12CO]=10^-3.5. This is slightly higher than the abundances derived for galactic and extragalactic starforming/starbursting regions. This results lends further support to X-ray enhanced HCN formation in the circumnuclear disk of NGC1068, as suggested by earlier studies. The HCO+ abundance ([HCO+]/[12CO]=10^-5) appears to be somewhat lower than that of galactic and extragalactic starforming/starbursting regions. When trying to fit the cm to mm continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to over-predict the mm continuum emission.Comment: accepted for publication by ApJ; 35pages, 22 figures and 6 tables (at the end of the file); 3 figures have been decreased in quality to match size limi

    Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study

    Full text link
    With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2_2YZ with Y = (Ni, Co, Pt), and Co2_2YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co2_2NiZ, Co2_2PtZ, and Fe2_2PtZ families the cubic phase is always, at T=0T=0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2_2NiZ and Fe2_2CoZ families this is the case for only 2 compounds -- Fe2_2CoGe and Fe2_2CoSn. For all compounds in which a tetragonal distortion occurs we calculate the MAE finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2_2NiGa has an MAE of -2.11~MJ/m3^3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.Comment: 8 pages, 5 figure

    The abundance pattern of O, Mg, Si and Fe in the intracluster medium of the Centaurus cluster observed with XMM-Newton

    Get PDF
    The abundances of O, Mg, Si and Fe in the intracluster medium of the Centaurus cluster are derived. The Fe abundance has a negative radial gradient. In solar units, the Si abundance is close to the Fe abundance, while the O and Mg abundances are much smaller. The high Fe/O and Si/O ratio indicate that metal supply from supernovae Ia is important and supernovae Ia synthesize Si as well as Fe. Within 2', the O and Mg abundances are consistent with the stellar metallicity of the cD galaxy derived from the Mg2_2 index. This result indicates that the central gas is dominated by the gas from the cD galaxy. The observed abundance pattern of the Centaurus cluster resembles to those observed in center of other clusters and groups of galaxies. However, the central Fe abundance and the Si/Fe ratio are 40 % higher and 30% smaller than those of M 87, respectively. Since the accumulation timescale of the supernovae Ia is higher in the Centaurus cluster, these differences imply a time dependence of nucleosynthesis by supernovae Ia

    Superconductivity in charge Kondo systems

    Full text link
    We present a theory of superconductivity in charge Kondo systems, materials with resonant quantum valence fluctuations, in the regime where the transition temperature is comparable to the charge Kondo resonance. We find superconductivity induced by charge Kondo impurities, study how pairing of a superconducting host is enhanced due to charge Kondo centers and investigate the interplay between Kondo-scattering and inter-impurity Josephson coupling. We discuss the implications of our theory for Tl-doped PbTe, which has recently been identified as a candidate charge Kondo system.Comment: 4 pages, 4 figures; revised version; detailed discussion on the physics of Tl-doped PbTe adde
    corecore