44 research outputs found

    A novel method to optimize autologous adipose tissue recovery with extracellular matrix preservation

    Get PDF
    This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugationwith spectrophotometer analysis. Extracellularmatrix preservationwas assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparisonwith untreated lipoaspirate; no differenceswhere reportedwhen varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer's lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications

    A novel method to optimize autologous adipose tissue recovery with extracellular matrix preservation

    Get PDF
    This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugation with spectrophotometer analysis. Extracellular matrix preservation was assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparison with untreated lipoaspirate; no differences where reported when varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer’s lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications

    Pharmacological management of hypertrophic cardiomyopathy: From bench to bedside

    No full text
    Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is still orphan of a specific drug treatment. The erroneous consideration of HCM as a rare disease has hampered the design and conduct of large, randomized trials in the last 50 years, and most of the indications in the current guidelines are derived from small non-randomized studies, case series, or simply from the consensus of experts. Guideline-directed therapy of HCM includes non-selective drugs such as disopyramide, non-dihydropyridine calcium channel blockers, or β-adrenergic receptor blockers, mainly used in patients with symptomatic obstruction of the outflow tract. Following promising preclinical studies, several drugs acting on potential HCM-specific targets were tested in patients. Despite the huge efforts, none of these studies was able to change clinical practice for HCM patients, because tested drugs were proven to be scarcely effective or hardly tolerated in patients. However, novel compounds have been developed in recent years specifically for HCM, addressing myocardial hypercontractility and altered energetics in a direct manner, through allosteric inhibition of myosin. In this paper, we will critically review the use of different classes of drugs in HCM patients, starting from “old” established agents up to novel selective drugs that have been recently trialed in patients

    A novel method to optimize autologous adipose tissue recovery with extracellular matrix preservation

    Get PDF
    none10This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugationwith spectrophotometer analysis. Extracellularmatrix preservationwas assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparisonwith untreated lipoaspirate; no differenceswhere reportedwhen varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer's lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications.openRoato I.; Mussano F.; Reano S.; Boriani F.; Margara A.; Ferracini R.; Adriani E.; Sabry O.; Fiorini M.; Fattori P.Roato, I.; Mussano, F.; Reano, S.; Boriani, F.; Margara, A.; Ferracini, R.; Adriani, E.; Sabry, O.; Fiorini, M.; Fattori, P

    High-accuracy and video-rate lifetime extraction from time correlated single photon counting data on a graphical processing unit

    No full text
    Graphical Processing Units (GPUs) are a powerful alternative to central processing units, especially for data-parallel, video-rate processing of large data volumes. In the complex scenario of high-performance, multichannel Time Correlated Single Photon Counting (TCSPC), a huge amount of data is potentially generated by the acquisition system. Exploiting a dedicated, external, programmable elaboration unit enables a high degree of flexibility to perform different types of analysis. In this paper, we present a GPU-based application that leverages the common unified device architecture application programming interface for video-rate and accurate lifetime extraction from TCSPC data acquired at a rate of up to 10 Gbit/s

    Decidable Properties of Graphs of All-Optical Networks

    No full text
    We examine several decidability questions suggested by questions about all-optical networks, related to the gap between maximal load and number of colors (wavelengths) needed for a legal routing on a xed graph. We prove the multiple ber conjecture: for every xed graph G there is a number LG such that in the communication network with LG parallel bers for each edge of G, there is no gap (for any load). We prove that for a xed graph G the existence of a gap is computable, and give an algorithm to compute it. We develop a decomposition theory for paths, dening the notion of prime sets of paths that are nite building blocks for all loads on a xed graph. Properties of such decompositions yield our theorems.

    On a Non-cooperative Model for Wavelength Assignment in Multifiber Optical Networks

    No full text
    We study path multicoloring games that describe situations in which selfish entities possess communication requests in a multifiber all-optical network. Each player is charged according to the maximum fiber multiplicity that her color (wavelength) choice incurs and the social cost is the maximum player cost. We investigate the price of anarchy of such games and provide two different upper bounds for general graphs— namely the number of wavelengths and the minimum length of a path of maximum disutility, over all worst-case Nash Equilibria—as well as matching lower bounds which hold even for trees; as a corollary we obtain that the price of anarchy in stars is exactly 2. We also prove constant bounds for the price of anarchy in chains and rings in which the number of wavelengths is relatively small compared to the load of the network; in the opposite case we show that the price of anarchy is unbounded
    corecore