11,680 research outputs found

    Modelling take-up of Family Credit and Working Families' Tax Credit

    Get PDF
    Many people in the UK do not claim benefits to which they seem to be entitled. Amongst those of working-age, take-up rates for Family Credit Ö an in-work benefit available to those with children and working at least 16 hours a week Ö were the lowest of the main three means-tested benefits. In 1999, the UK Government replaced Family Credit with Working Families' Tax Credit, which was more generous, and delivered in a different way from FC. As a prelude to further work (now published as an update to this in the final report), we have analysed the decision to take up FC, and how take-up changed during the initial 6 month phase-in period of WFTC. Although there are differences in how well each records receipt of FC, we find reassuring similarities in comparable econometric models of take-up estimated on three different micro-data-sets. Entitlement, earnings, non-labour income, and education attainment are the most important determinants of FC take-up. We investigated FC take-up in greater detail using only the Family Resources Survey. Social renters are more likely to claim FC than owner occupiers or those in the private rental market, and we find that housing benefit recipients seem to under-value the potential fall in HB when considering whether to claim FC. We find that the Family Credit childcare disregard had little impact on the likelihood of take-up. Take-up of WFTC, conditional on entitlement, fell immediately after its introduction, compared to FC, but the majority of the effect is explained by the relatively low take-up rates of those families who were not previously entitled to FC. This is unsurprising, as we would not expect this group to have claimed WFTC on the first day of its existence. Work currently in progress is examining how take-up of WFTC, and the factors associated with take-up, changed between April 2000 and March 2003

    Reset and switch protocols at Landauer limit in a graphene buckled ribbon

    Full text link
    Heat produced during a reset operation is meant to show a fundamental bound known as Landauer limit, while simple switch operations have an expected minimum amount of produced heat equal to zero. However, in both cases, present-day technology realizations dissipate far beyond these theoretical limits. In this paper we present a study based on molecular dynamics simulations, where reset and switch protocols are applied on a graphene buckled ribbon, employed here as a nano electromechanical switch working at the thermodynamic limit

    First Principles Simulations of Boron Diffusion in Graphite

    Get PDF
    Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane. © 2007 The American Physical Society

    Weak Measurements in Non-Hermitian Systems

    Full text link
    "Weak measurements" -- involving a weak unitary interaction between a quantum system and a meter followed by a projective measurement -- are investigated when the system has a non-Hermitian Hamiltonian. We show in particular how the standard definition of the "weak value" of an observable must be modified. These studies are undertaken in the context of bound state scattering theory, a non-Hermitian formalism for which the Hilbert spaces involved are unambiguously defined and the metric operators can be explicitly computed. Numerical examples are given for a model system

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A

    Characteristic molecular properties of one-electron double quantum rings under magnetic fields

    Full text link
    The molecular states of conduction electrons in laterally coupled quantum rings are investigated theoretically. The states are shown to have a distinct magnetic field dependence, which gives rise to periodic fluctuations of the tunnel splitting and ring angular momentum in the vicinity of the ground state crossings. The origin of these effects can be traced back to the Aharonov-Bohm oscillations of the energy levels, along with the quantum mechanical tunneling between the rings. We propose a setup using double quantum rings which shows that Aharonov-Bohm effects can be observed even if the net magnetic flux trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat

    Quantum correlations versus Multisimultaneity: an experimental test

    Get PDF
    Multisimultaneity is a causal model of relativistic quantum physics which assigns a real time ordering to any set of events, much in the spirit of the pilot-wave picture. Contrary to standard quantum mechanics, it predicts a disappearance of the correlations in a Bell-type experiment when both analysers are in relative motion such that, each one in its own inertial reference frame, is first to select the output of the photons. We tested this prediction using acousto-optic modulators as moving beam-splitters and interferometers separated by 55 m. We didn't observe any disappearance of the correlations, thus refuting Multisimultaneity.Comment: 4 pages, 3 figures, RevTex 4 versio

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur

    Does STAT5a Have an Effect on BMAL1 Levels in Mammary Epithelial Cells?

    Get PDF
    The mammary gland is a very important organ for reproduction in mammals because it produces milk which serves as the primary source of nutrients for newly-born offspring. Previous studies suggest that its development is regulated by circadian clocks, biochemical oscillators that generate circadian rhythms (the body’s internal clock). The circadian system plays a major role in homeostasis, coordinating the body’s internal physiology and synchronizing it with the external environment. Our lab showed that levels of the BMAL1 protein, a core clock component, increased in the mammary gland at the onset of lactation. Treatment of mammary epithelial cells (HC11) with the hormone prolactin significantly increased BMAL1 levels. We hypothesize that the secretion of prolactin during lactogenesis induces expression of BMAL1 in the mouse mammary gland through the STAT5a signaling pathway. The objective of the project was to determine the effect of different amounts of STAT5a protein on BMAL1 levels with and without prolactin treatment. For this experiment, western blot analysis was used to measure STAT5a and BMAL1 levels in wild type HC11 cells and in HC11 cell lines that were genetically modified to: 1) express very high levels of STAT5a (STAT5a-OE), 2) express a mutant form of STAT5a that is inactive (STAT5a-dnl), and 3) delete the BMAL1 gene (BMAL1 KO). Our first round of analysis showed that overexpressing STAT5a increased BMAL1 protein levels, especially in cells differentiated by prolactin. Results from this experiment would allow us to better understand the relationship between mammary gland development and the circadian system

    Film blowing of PHB-based systems for home compostable food packaging

    Get PDF
    One of the routes to minimize the environmental impact of plastics waste is the use of bio-sourced and biodegradable alternatives, particularly for packaging applications. Although Polyhydroxyalkanoates (PHA) are attractive candidates for food packaging, they have poor processability, particularly for extrusion film blowing. Thus, one relatively successful alternative has been blending PHA with a biodegradable polymer. This work proposes film blowing of a co-extruded Poly (hydroxybutyrate) (PHB) layer with a poly butylene adipate-co-terephtalate (PBAT) layer to enhance bubble stability, mechanical and barrier properties. Co-extrusion is detailed, together with the different strategies followed to improve adhesion between film layers and the PHB content in the films. Films with thicknesses below 50 micron and elongation at break beyond 500 % were consistently produced.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 774088. LH also acknowledges funding from the Portuguese Foundation for Science and Technology Investigator Programme through grant IF/00606/2014
    • …
    corecore