2,935 research outputs found

    MOCVD-Fabricated TiO2 Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture

    Get PDF
    TiO2 thin films with various morphologies were grown on Ti substrates by the LP-MOCVD technique (Low Pressure Chemical Vapour Deposition from Metal-Organic precursor), with titanium tetra-iso-propoxide as a precursor. All the films were prepared in the same conditions except the deposition time. They were characterized by X-ray diffraction, scanning electron microscopy, optical 15 interferometry, water contact angle measurements. MOCVD-fabricated TiO2 thin films are known to be adapted to cell culture for implant requirements. Human gingival fibroblasts were cultured on the various TiO2 deposits. Differences in cell viability (MTT tests) and cell spreading (qualitative assessment) were observed and related to film roughness, wettability and allotropic composition

    Iris Codes Classification Using Discriminant and Witness Directions

    Full text link
    The main topic discussed in this paper is how to use intelligence for biometric decision defuzzification. A neural training model is proposed and tested here as a possible solution for dealing with natural fuzzification that appears between the intra- and inter-class distribution of scores computed during iris recognition tests. It is shown here that the use of proposed neural network support leads to an improvement in the artificial perception of the separation between the intra- and inter-class score distributions by moving them away from each other.Comment: 6 pages, 5 figures, Proc. 5th IEEE Int. Symp. on Computational Intelligence and Intelligent Informatics (Floriana, Malta, September 15-17), ISBN: 978-1-4577-1861-8 (electronic), 978-1-4577-1860-1 (print

    Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram

    Get PDF
    The flux-magnetomotive force (flux-MMF) diagram, or "energy conversion loop," is a powerful tool for computing the parameters of saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes "voltage-driven" rather than "current-driven." This paper describes an efficient method for estimating the motor performance-average torque, inductances-by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the method with alternative approaches

    Dust in dwarf galaxies: The case of NGC 4214

    Get PDF
    We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the emission from HII regions and their associated photodissociation regions (PDRs) and the emission from diffuse dust. Furthermore, most model parameters can be directly determined from the data leaving very few free parameters. We can fit both the emission from HII+PDR regions and the diffuse emission in NGC 4214 with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of Galaxies' Proceedings IAU Symposium No 284, 201

    Theoretical study of interacting hole gas in p-doped bulk III-V semiconductors

    Get PDF
    We study the homogeneous interacting hole gas in pp-doped bulk III-V semiconductors. The structure of the valence band is modelled by Luttinger's Hamiltonian in the spherical approximation, giving rise to heavy and light hole dispersion branches, and the Coulomb repulsion is taken into account via a self-consistent Hartree-Fock treatment. As a nontrivial feature of the model, the self-consistent solutions of the Hartree-Fock equations can be found in an almost purely analytical fashion, which is not the case for other types of effective spin-orbit coupling terms. In particular, the Coulomb interaction renormalizes the Fermi wave numbers for heavy and light holes. As a consequence, the ground state energy found in the self-consistent Hartree-Fock approach and the result from lowest-order perturbation theory do not agree. We discuss the consequences of our observations for ferromagnetic semiconductors, and for the possible observation of the spin-Hall effect in bulk pp-doped semiconductors. Finally, we also investigate elementary properties of the dielectric function in such systems.Comment: 9 pages, 5 figures, title slightly changed in the course of editorial process, a few references added, version to appear in Phys. Rev.

    Security for Replicated Web Documents

    Get PDF

    Operator algebras from the discrete Heisenberg semigroup

    Full text link
    We study reflexivity and structure properties of operator algebras generated by representations of the discrete Heisenberg semi-group. We show that the left regular representation of this semi-group gives rise to a semi-simple reflexive algebra. We exhibit an example of a representation which gives rise to a non-reflexive algebra. En route, we establish reflexivity results for subspaces of H^{\infty}(\bb{T})\otimes\cl B(\cl H)

    Optimal simulation of two-qubit Hamiltonians using general local operations

    Get PDF
    We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local resources but no entanglement nor classical communication. We characterize notions of simulation, and proceed to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise isolated systems AA and BB interact by a nonlocal Hamiltonian HHA+HBH \neq H_A+H_B. We consider the achievable space of Hamiltonians HH' such that the evolution eiHte^{-iH't} can be simulated by the interaction HH interspersed with local operations. For any dimensions of AA and BB, and any nonlocal Hamiltonians HH and HH', there exists a scale factor ss such that for all times tt the evolution eiHste^{-iH'st} can be simulated by HH acting for time tt interspersed with local operations. For 2-qubit Hamiltonians HH and HH', we calculate the optimal ss and give protocols achieving it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a polyhedron defined by a partial order on the set of 2-qubit Hamiltonians.Comment: (1) References to related work, (2) protocol to simulate one two-qudit Hamiltonian with another, and (3) other related results added. Some proofs are simplifie
    corecore