View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace at VU

Security for Replicated Web Documents

B.C. Popescu
l. Kuz
M. van Steen
A.S. Tanenbaum

Internal report IR-498, June 2002

Abstract

The WWW is experiencing explosive growth and an increasing number
of security-sensitive applications make now use of it. To achieve worldwide
scalability and reduce latency in handling user requests, many of these ap-
plications make extensive use of data replication through caches and Content
Delivery Networks. However, such replication mechanisms place data on un-
trusted hosts, which introduces various security problems. In this paper we
present an architecture that combines data content, replication strategies and
security in one unified object model and offers integrity guarantees for Web
documents replicated on non-secure servers.

o>

vrije Universiteit

Department of Mathematics and Computer Science


https://core.ac.uk/display/15453244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The World Wide Web is increasingly experiencing scalability problems. When a
document suddenly becomes very popular (a phenomenon known as flash crowds),
clients experience long delays in retrieving it. The single hosting server simply
cannot cope (CPU-wise or bandwidth-wise) with the sudden high demands. A
possible solution to this problem is data replication.

A common way of replicating Web documents is through content delivery net-
works (CDNSs). These are normally run by companies that set up a large number
of servers around the world, each server dedicated to hosting Web document repli-
cas. The owners of these documents usually have no control over the replicating
servers. Thus, in the CDN scenario, clients are retrieving data from hosts that are
controlled neither by them, nor by the content providers. This situation is by no
means specific only to CDNs; caching, presents the same problem.

Retrieving data from untrusted hosts introduces a series of security issues,
which can be grouped in two categories - document integrity and secure naming.
Document integrity deals with ensuring that a document retrieved by a client from
an untrusted host has not been tampered with by that host. Secure naming deals
with establishing secure associations between Web documents and the real-world
entities in charge of them.

This paper introduces a security architecture that guarantees data integrity and
secure naming for Web content even when this content is replicated on untrusted
hosts. While read-only secure storage systems have already been proposed [6],
the main contribution of this paper is to describe a design where data content,
replication strategies and security are all integrated in one unified object model.

The rest of the paper is organized as follows: in Section 2 we introduce a
new Web document model with a quick discussion on how such a model can be
implemented in order to use most of the current Web infrastructure. Section 3
describes our security architecture, and how this architecture tackles secure naming
and document integrity issues. In Section 4 we discuss related work, while in
Section 5 we give a quick overview of our implementation effort, as well as our
plans for future work.

2 Globe Web Documents

In the past years we have been working on the design and implementation of Globe
[16] - a middleware architecture that allows the development of distributed appli-
cations based on replicated shared objects. One such distributed application is
GlobeDoc [17]. GlobeDoc objects are the building blocks for our new Web docu-



ment model.

In the GlobeDoc model of the Web, a Web site is composed of related Web doc-
uments. A Web document itself is a collection of logically related Web resources.
These Web resources are referred to as a document’s page elements and can be
anything that is accessible over the Web (e.g., HTML files, text files, images, audio
files, video files, applets, etc.). The relation between the resources contained in a
Web document is generally stronger than that between the documents contained in
a Web site. For example, an organization’s Web site contains a collection of Web
documents that are somehow related to that organization, while a Web document
representing a news story would contain only the elements directly relating to that
story (e.g., the HTML page plus any icons and images relating to the story or the
page layout).

In GlobeDoc, a Web document is encapsulated in a Globe distributed shared
object which contains that document’s elements in its state. Such a GlobeDoc
object offers methods that allow clients to access and modify its state on a per-
element basis. The hyperlinked structure that is normally provided by Web pages
is maintained in GlobeDoc. A relative hyperlink contained in some GlobeDoc ob-
ject’s element refers to another element in that same object. Likewise, an absolute
hyperlink may refer to an element contained in another GlobeDoc object.

Every GlobeDoc object is identified by a unique object ID (OID). This is a
160-bit number which does not contain any location information and is not human
readable. The GlobeDoc architecture, therefore, contains two services that facili-
tate locating objects. The Naming Service [3] maps human readable object names
onto OIDs. The Globe Location Service [15] maps OIDs onto contact addresses,
which contain information about where and how to contact a GlobeDoc object.

By virtue of it being a Globe distributed shared object, a GlobeDoc can dis-
tribute (replicate) its state over multiple physically separated address spaces (or
machines). As such, requests for an object’s state will be distributed over these
various machines, thereby spreading the total load generated by the requests and
preventing any single machine hosting the GlobeDoc from becoming overloaded.
Similarly, by strategically replicating a GlobeDoc object’s state so that it is close
to large concentrations of clients, the traffic at each replica will have a local char-
acter, increasing responsiveness for clients and decreasing overall network traffic
and saturation. This architecture is ideally suited to the creation of (peer-to-peer)
content delivery networks.

Also, because Globe makes the state distribution transparent to clients and be-
cause the distribution policies can be determined independently per Globe object,
GlobeDoc makes it possible to apply distribution strategies on a per-document ba-
sis. In this way GlobeDoc allows replication of Web documents without imposing
any single global replication policy on all documents. In [13] we have shown that



applying per-document distribution strategies can lead to better efficiency than the
application of one-size-fits-all strategies.

2.1 GlobeDoc Services

A client accesses a GlobeDoc object using a regular Web browser. However, stan-
dard Web browsers cannot directly connect to GlobeDoc objects and invoke its
methods to retrieve the page elements. For this task, browsers rely on a GlobeDoc
proxy server to intercept requests to GlobeDoc objects and manage the interaction
with the object (i.e., connect to the object and retrieve its elements). Because reg-
ular Web browsers do not understand GlobeDoc object names, hybrid URLs are
used. These are just regular URLs that start with a distinguishing prefix (which
in our case is http://enter.globeworld.org). GlobeDoc and page element names are
then embedded in these hybrid URLS.

GlobeDoc proxies connect to GlobeDoc objects by binding to them. The re-
sult of binding to a GlobeDoc object is that a local representative of that object is
placed in the address space of the binding process. A local representative is a local
part of the GlobeDoc object. It can be a simple object proxy, forwarding method
invocations to other replicas, or it can be a full replica containing a local copy of
the GlobeDoc object’s state. The client, however, is unaware of this and simply
invokes methods from the local representative as though it was a local object.

Binding itself consists of two distinct phases: (1) finding the object, and (2) in-
stalling the local representative. This is illustrated in Figure 1. Finding an object is
separated into a name-lookup and a location-lookup step; installing the local rep-
resentative requires that a suitable contact address and implementation be selected.

2.1.1 Naming Service

To find an object, a process must resolve the object’s name to an OID. This is done
by passing the object name to a naming service. The naming service returns the
object’s OID. Whereas an OID uniquely identifies an object (i.e., an object always
has exactly one OID), an object may have multiple names that resolve to its OID.
An object name is simply a human-readable string that represents an object. It is
up to the naming service to interpret this name and resolve it to an OID.

2.1.2 Globe Location Service

Resolving an object’s name leads to an OID. An OID, however, does not identify
the location of an object and its replicas. To find the actual object, the OID must
first be passed to a location service, which returns one or several contact addresses



Client Process
@ name

Naming Service
B

B — >
Location Service

-
@ Z;gﬁo;‘ ® Contact
! Address

@ Make contact
-

\
Local Representative

I

@Code

@ Distributed Shared Object

Implementation Repository

Figure 1: Binding to a GlobeDoc object

which represent GlobeDoc object contact points. The location service is respon-
sible for storing contact addresses and resolving OIDs to these contact addresses.
Besides looking up contact addresses for objects, the location service also allows
addition, deletion and modification of contact-address mappings.

The Globe Location Service is implemented as a distributed search tree. In
this tree, the world is divided into a hierarchical set of domains. At the lowest
level there is one domain per site; a collection of sites form a region, etc. An
object is recorded at each site where it has a contact address, and recursively in
each enclosing region up to the root of the tree. Initially, a record at the site level
contains the actual contact addresses while records at higher levels contain pointers
to the next lower level. Recording an object at multiple levels allows searches with
expanding rings: a search starts at the local site, followed by the local region, then
the next higher level region, etc., and eventually followed by the root.

2.1.3 Object Server

A GlobeDoc object’s replicas are implemented as stateful local representatives
hosted on object servers. An object server is a process that provides an address
space, contact points and runtime services to the local representatives that it
hosts. The object server also manages a local representative’s access to local re-
sources such as local disks and networking resources. Besides simply hosting LRs,
the Globe object server also has a remotely accessible interface that allows other
local representatives, other Globe object servers, or administrators to request ser-



vices from it. These services include the creation and destruction of GlobeDoc
objects and their replicas.

3 The GlobeDoc Security Architecture

In this section we will describe the mechanisms used to make GlobeDoc objects
secure. We have been using well-known security and cryptographic techniques as
building blocks, and combine them in an architecture that can offer secure naming
and data integrity guarantees.

Following the model of the Web master for regular Web documents, we re-
quire that behind each GlobeDoc object there is a person or organization - the
object owner - that is in charge of it. The owner is the one who creates the object
and is responsible for providing permanent storage for it, updating it, and setting
up a replication and security policy for the object. Furthermore, we require each
GlobeDoc to have a unique public/private key pair associated with it, which is
generated by the owner when the object is created. As we will describe next, the
object owner uses the object’s private key to sign the object’s state (files) before
it replicates it, while clients use the public key to perform integrity checks when
retrieving parts of the object’s state from untrusted hosts.

3.1 SecureNaming
3.1.1 The Problem

Secure naming deals with creating secure and trustworthy associations between
Web resources and qualified names, which in turn convey information about the
real world entities that are behind these resources. In the current Web, name bind-
ing is acomplished through the Domain Name System (DNS) [12], a hierarchical
distributed database that translates between human-readable resource names and
their IP addresses. Data integrity requirements were left out from the original DNS
design, which made it vulnerable to various types of masquerading attacks. To
prevent these, a secure DNS (DNSsec) framework has been proposed [5] and is
currently being deployed.

All DNSsec does is establish secure associations between resource names and
sets of IP addresses. However, clients cannot authenticate IP addresses, so their
attempts to retrieve data from servers at these addresses are vulnerable to man-in-
the-middle attacks. To prevent this, secure Web servers have public/private key
pairs which they use to authenticate to clients. The server’s public key needs to be
certified by some Certificate Authority (a trusted third party, Verisign for example)
through a digital certificate that binds the public key to the server’s name (which



presumably can be traced to the qualified path name solved through DNSsec). Hav-
ing this public key, securely associated to the server’s name (by the CA), and to the
server’s IP address (by DNSsec), the client can then authenticate the server. In this
way, the man-in-the-middle attack becomes impossible, and the name binding and
secure channel establishment can be safely combined.

The problem with this approach is that it does not work well with dynami-
cally replicated Web documents. Although DNS supports mirroring Web sites by
allowing multiple addresses associated with the same name, the basic assumption
is that mirroring is more or less static. Dynamic active replication of Web docu-
ments would put serious strain on the resource-record caching that makes DNS so
efficient.

In conclusion, the approach as followed in DNSsec for secure naming of Web
documents will not work well for the GlobeDoc model we are proposing. For
GlobeDoc objects we need a naming mechanism that both:

e Securely associates objects with the real-world entities behind these objects.

e Supports efficient lookup operations even when objects are massively repli-
cated and replicas’ network addresses change frequently.

3.1.2 Our Solution

As described in Section 2, each GlobeDoc is identified through a unique 160-bit ob-
ject ID (OID). Secure name binding requires creating a secure association between
an OID, the object’s public key, and the real-world entity (individual, company,
organization) that is in charge of the object.

First, we will examine how to securely link the object’s public key to the OID.
This can be accomplished by having the OID be the 160-bit secure hash SHA-1 [1]
of the object’s public key, in fact creating a self-certifying OID for the object. The
SHA-1 secure hash function has the property that it is compuationally intractable
to find two different inputs with the same hash. Therefore an OID obtained in this
manner is securely linked with the public key of the object. This approach of using
self-certifying OIDs is similar to the one taken by the designers of the SFS system
[11], who have pioneered the concept of self-certifying resource names [10].

Now, the only thing left is to securely associate self-certifying OIDs with the
real-world entities in charge with their corresponding objects. As stressed out in the
SDSI document [14], we believe that establishing trust in a remote entity (trusting
that entity to be who it claims to be) is such a security-sensitive task that it is better
to give most control over it to the users themselves. To facilitate this, GlobeDoc
objects have a special security interface that can be used by clients (in fact by their
proxies) to retrieve any certificates the objects can provide to prove their identity.



The users themselves can specify a number of CAs they trust, and store their public
keys with their user proxy. When the user requests an element part of a GlobeDoc,
its proxy requests identity certificates that match the user’s list. For the first match
found, the proxy displays the naming information in the certificate. The user ex-
amines this information and can then make a decision how much trust to put in that
object.

The CA-mediated secure name-binding mechanism we just described is ap-
propriate when Web objects are used for highly sensitive applications such as e-
commerce or e-banking. For less sensitive applications, users may find the name-
binding information provided by a DNSsec-like name service sufficient. The good
news is that DNSsec can be extended to support self-certifiying OIDs by storing
them in the resource records instead of IP-addresses [3]. The great advantage of
this would be that DNS would store only location-independent data. The location-
dependent information associated with each object (the addresses of its replicas) is
retrieved in an additional step from the Globe Location Service. This two step se-
cure name resolution allows us to overcome the problems DNS has when tracking
dynamically replicated documents.

One point we want to stress here is that users do not have to trust the informa-
tion stored in the Location Service. In fact, using the Location Service is not even
mandatory for GlobeDoc objects; a per-object dedicated directory replica keep-
ing track of all the other replicas’ contact points would accomplish the same task.
A malicious Location Service server can return false contact points to its clients,
making these clients bind to replicas which are not part of the objects they want to
contact. However, as we will see in the next section, clients can easily detect when
the data they are retrieving is not part of the GlobeDoc object they want to browse,
so the most harm a malicious Location Service server can do is a temporary denial
of service.

As a conclusion, secure naming for GlobeDoc objects is achieved through self-
certifying OIDs, which can be stored in DNSsec resource records. When addi-
tional security guarantees are necessary, object-provided certificates, signed by
trusted CAs can also be employed. Because only location-independent informa-
tion is stored, this mechanism has the two properties we required in Section 3.1.1:
it securely associates Web objects to the real-world entities in charge of them, and
can efficiently support massively replicated objects even when replicas network
addresses change frequently.



3.2 Document Integrity
3.2.1 The Problem

Most of the data transfer in the current WWW is insecure. Clients simply connect
to Web servers and request the documents stored there. This approach is clearly
vulnerable to man-in-the-middle attacks, not to mention malicious caches. In such
an attack scenario, an active attacker intercepts the client’s request, and answers
with his own document. Although such attacks are infrequent, that is probably as
much due to the lack of determination on the part of the attackers as to the inherent
security of the underlying network architecture. Furthermore, due to the possibility
of such attacks, the security of an HTTP request is downgraded to the security of
the weakest network link/router on the request path.

In the current WWW, the most common protection against such attacks is
through TLS (Transport Layer Security) [4]. TLS uses public-key cryptography
to authenticate servers and establish secure channels between servers and clients.

The main problem with TLS is that it requires servers to be trusted. The secure
channel between the client and server does not help at all if a malicious server sends
bogus data over it. For this reason, TLS allows documents to be replicated only on
trusted servers, which greatly restricts the set of acceptable hosts. In addition to
this, TLS introduces a significant delay for the connection establishment due to the
computationally expensive public-key operations that occur in this phase. For these
reasons, only highly security sensitive Web applications (such as e-commerce, or
e-banking) make use of TLS.

Turning back to our GlobeDoc objects, we can see that a mechanism like TLS is
clearly not suited for ensuring data integrity. As mentioned in Section 2, GlobeDoc
objects dynamically place their replicas on (possibly) untrusted object servers close
to where their client requests are coming from. Our assumption is that most of
these servers are honest, but we need to consider the possibility that some of them
may try to replace the documents they host with fake data. Therefore, we need a
security mechanism that enforces the following three properties on the replicated
state of a GlobeDoc:

e Authenticity - the document the client receives from a server has indeed
been created by the object’s owner. No attacker or malicious server should
be able to pass one of their own documents as being part of the object.

e Freshness - the client is guaranteed to receive the most recent version of a
document part of a object. No attacker or malicious server should be able to
pass old versions of a document and convince the client they are fresh.



e Consistency - the client is guaranteed to receive a document, part of the
object, that is consitent to what she has requested. No attacker or malicious
server should be able to replace the requested document with another fresh
document part of the same object.

Our aim is to come up with a security design that enforces these three proper-
ties, and at the same time is efficient and lightweight (especially on server load),
so that it can be employed with every type of Web application.

3.2.2 Our Solution

As we mentioned in Section 2, a GlobeDoc consists of a number of page elements.
These can be HTML source files, images, Java applets and so on. We preserve
the integrity of the object’s state by having an integrity certificate associated with
each page element (file) part of the object. As shown in Figure 2, this is a digital
certificate signed by the object’s owner that contains a MD5 hash [8] of the page
element, the element’s name, a validity interval, and some optional revocation in-
formation.

Integrity Certificate
Page Element Name
Page Element Hash
Validity Interval

CRL Directory Address
CRL Validity Interval
Signature

Figure 2: Integrity certificate for a GlobeDoc page element

Every server that hosts GlobeDoc replicas is required to store all of the object’s
page elements and their corresponding certificates. As we mentioned in Section
3.2.1, page elements retrieved from untrusted servers should be authentic, fresh,
and consistent with the user request. The integrity certificate associated with each
such element allows the user to check for these properties in the following steps.

e Using the object’s public key, the client verifies that the signature on the
integrity certificate has been generated using the object’s private key (au-
thenticity).

e The client computes the MD5 hash of the page element and makes sure it is
the same as the one in the certificate (authenticity).

e The client checks the time of retrieval to ensure it falls in the validity interval
specified in the certificate (freshness).

10



e The client checks the “element name” field in the certificate to ensure it is
the same as the element name she has requested (consistency).

o |f the certificate requires revocation verification, the client queries the revo-
cation directory to make sure the certificate has not been revoked (freshness).

The optional revocation information stored in the integrity certificate consists
of the freshness interval (how often a certificate revocation list - CRL - is published)
and the address of the on-line directory where this list will be stored. The CRL is
issued and signed by the object’s owner. One possibility is to store this CRL on
the server that hosts the object’s master replica, so that client proxies can retrieve
it from there (CRL pull). Yet another possibility is that the object’s master replica
periodically distributes the CRL to all the hosting servers, which send it to the
clients together with the data and integrity certificates (CRL push).

3.3 Putting the Pieces Together

The security architecture for GlobeDoc objects results from combining the various
security mechanisms described so far. The key advantage of this architecture is
providing integrity guarantees for end-users, even when the Web content they are
browsing is replicated on untrusted servers. Figure 3 shows how secure browsing
through GlobeDoc objects works.

The user starts with a hybrid URL (as described in Section 2), with an em-
bedded object and page element name. The user can either directly type the hy-
brid URL in the Web browser, or get to it through an external link in some other
GlobeDoc object. When the user’s proxy receives this URL, it will resolve the ob-
ject name by contacting the secure naming service, thus obtaining a self-certifying
OID. The proxy then queries the Location Service for that OID and finds the clos-
est object replica. The Location Service is not trusted, so there is a chance that the
address it returns may point to a replica which is not part of the object. However,
this can cause at most denial of service for the user, since she can always check
the authenticity of the data retrieved from the replica. Our assumption is that the
Location Service provides accurate information most of the time; if attackers are
able to corrupt some of the LS’s servers, this can be easily detected, and appropri-
ate measures (rebooting servers, restoring the original data content from backups,
etc.) be taken.

Once the user is connected to a GlobeDoc object replica, her proxy first re-
trieves the object’s public key, takes its SHA-1 hash and makes sure it matches the
self-certifying OID. As an extra security check, the proxy can request some addi-
tional identity proof from the object, in the form of a name certificate signed by one

11



Browser
1. Request 14 Display
hybrid ‘data
URL :
User’s Proxy " 2.Resolve | SecureName
name Service
© 3.Find L ocation
replica Service
4. Get object’s _
] ] - public key Replica
5. Verify publickey | g Get additional
“identity proofs
7. Display certified :
object name :
- Get page element

- and integrity certificate

8. Verify certificate
signature

9. Verify hash
10. Check freshness

11. Check : on-li
consistency : 12. Get CRL 'n- ine
] : Directory
13. Check revocation| -

User's
M achine

Figure 3: Secure Web browsing through GlobeDoc objects

of the CAs trusted by the user. If such a certificate is found, the naming informa-
tion in the certificate is displayed to the user in a ““Certified as:” window. At this
point, the secure binding between the proxy and the object is complete; the proxy
now requests the page element specified in the URL and the element’s integrity
certificate; once it has them, it performs the authenticity, consistency and freshness
tests discussed in the previous section. Next, if the integrity certificate contains any
revocation information, the proxy retrieves a fresh CRL (from an on-line directory,
or from the replica itself), and ensures the certificate is still valid. Finally, if all
these tests are successful, the page element is sent to be displayed in the user’s

12



browser, otherwise a “Security Check Failed” HTML document is generated.

4 Related Work

The WWW is experiencing explosive growth, and an increasing number of security-
sensitive applications make now use of it. Because of this, mechanisms that can
make the Web more secure are a hot topic of research and a number of solutions
have been proposed. What makes the GlobeDoc approach distinctive is the fact that
it considers not only security but other aspects, such as data content aggregation
and replication, creating a unified Web document object model.

The current “state of the art” for secure Web browsing is the combination of
DNSsec [5], certified Web servers’ public keys and TLS [4]. In Section 3 we
have described how these mechanisms can be combined in order to achieve secure
naming, server authentication and integrity guarantees for the data received by the
clients. However, this approach does not support document replication on untrusted
hosts. Furthermore, since DNSsec records are used to store location-dependent
information (IP addresses), this approach does not scale well for dynamically-
replicated documents.

Like GlobeDoc, the read-only Secure File System (r-oSFS) [6] focuses on se-
curely replicating data on untrusted servers. The basic architectural element for
r-oSFS is the file system; because of this it is possible to use r-oSFS as a mid-
dleware and implement various distributed applications on top of it, a secure Web
infrastructure being one such possible application [7]. In order to guarantee the
integrity of data replicated on untrusted hosts, r-oSFS constructs a hash tree by
applying a secure hash function (SHA-1) on the data blocks and i-nodes of the file
system. This approach is very efficient, since only the root of the tree needs to
be signed by the owner, but has the drawback that only one global (per-file sys-
tem) consistency interval can be supported, instead of allowing per-file freshness
constraints.

Although r-oSFS file systems can be replicated on untrusted hosts, there is little
support for the actual replication. In contrast, each GlobeDoc comes with its own
replication policy which is part of the object itself; this allows for very fine-grained
(per page-element) replication policies to be defined, which has been proven [13]
to greatly improve performance. Following the same logic, the GlobeDoc security
architecture uses per page-element integrity certificates, which allow owners to set
per page-element fresshness constraints (which is not possible with r-oSFS).

The Globe Distribution Network (GDN) [2] is another distributed application
built on top of the Globe middleware. GDN aims at providing secure distribution
of free software packages. Like GlobeDoc, GDN also relies on untrusted servers

13



for data replication, and employs similar cryptographic techniques to guarantee
data integrity. However, GDN focuses more on data content traceability to prevent
the distribution of illegal material, and is less concerned with the freshness and
consistency aspects of replication.

Finally, OceanStore [9] is a project that aims at using untrusted hosts to pro-
vide a “utility infrastructure designed to span the globe and provide continuous
access to persistent information.” To accomplish this ambitious goal, the design-
ers of the system make use of peer-to-peer technologies, such as associative stor-
age, distributed routing, and probabilistic query algorithms. Although both make
use of untrusted storage, OceanStore and GlobeDoc have slightly different goals:
OceanStore assumes that all the storage is untrusted, and focuses on high data re-
dundancy to prevent loss due to malicious hosts or catastrophic events. GlobeDoc
on the other hand assumes that each document has access to some secure stor-
age provided by its owner (the traditional Web document model), and relies on
untrusted hosts for replication in order to improve performance. Although we rec-
ognize the many revolutionary ideas OceanStore introduces, we believe that the
GlobeDoc Web document model is more appropriate for the next generation of
secure WWW services.

5 Implementation Status and Future Work

We are in the advanced stages of the implementation process, and we are making
rapid progress because we are able to re-use some of the security functions devel-
oped for the GDN project. We have developed a software tool - tika - that takes
a number of page elements and creates the corresponding GlobeDoc object. Tika
is to be used by object owners on their (secure) machines; it uses the Java 1.4 se-
curity library functions to generate the GlobeDoc object’s public/private key pair;
the private key is then safely stored in the owner’s Key Store. Tika then generates
the integrity certificates for all the object’s page elements; the object’s state will
include the page elements, their corresponding certificates and the object’s public
key. We have also used Java to implemented the GlobeDoc proxy, which now fully
supports object binding and integrity certificate verification.

Currently, our prototype does not offer any support for integrity certificate re-
vocation, which we plan to integrate in the near future; another feature we need to
integrate is the CA mediated authentication mechanism, as well as an interface that
would allow users to input the public keys of the Certificate Authorities they trust.

14



References

[1] Secure Hash Standard. FIPS 180-1, Secure Hash Standard, NIST, US Dept.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

of Commerce, Washington D. C. April 1995.

A. Bakker, M. van Steen, and A. Tanenbaum. A Law-Abiding Peer-to-Peer
Network for Free-Software Distribution. In Proc. IEEE Int’l Symp. on Net-
work Computing and Applications, Cambridge, MA, February 2002.

G. Ballintijn, M. van Steen, and A. Tanenbaum. Scalable user-friendly re-
source names. IEEE Internet Computing, 5(5):20-27, 2001.

T. Dierks and C. Allen. The TLS protocol version 1.0,. IETF RFC 2246,
January 1999,

D. Eastlake. Domain name system security extensions. RFC 2535, March
1999.

K. Fu, M. Kaashoek, and D. Mazieres. Fast and secure distributed read-only
file system. In Proc. 4th USENIX Symp. on Operating Systems Design and
Implementation, pages 181-196, San Diego, CA., Oct. 2000.

M. Kaminsky and E. Banks. SFS-HTTP: Securing the web with self-
certifying URLSs. citeseer.nj.nec.com/470041.html.

C. Kaufman, R. Perlman, and M. Speciner. Network Security. Prentice Hall,
Upper Saddle River, NJ, 1995.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Ar-
chitecture for Global-scale Persistent Storage. In Proc. 9th ACM ASPLOS,
pages 190-201, Cambridge, MA, November 2000. ACM.

D. Mazieres and M. F. Kaashoek. Escaping the evils of centralized control
with self-certifying pathnames. In Proc. ACM SIGOPS, Sep 1998.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating Key
Management from File System Security. In Proc. 17th Symp. on Operating
Systems Principles, pages 124-139, Kiawah Island, SC, 1999.

P. V. Mockapetris and K. J. Dunlap. Development of the domain name system.
In SIGCOMM, pages 123-133, 1988.

15



[13] G. Pierre, M. van Steen, and A. Tanenbaum. Dynamically Selecting Optimal
Distribution Strategies for Web Documents. IEEE Transactions on Comput-
ers, 51(6), 2002. To appear.

[14] R. L. Rivest and B. Lampson. SDSI — A Simple Distributed Security Infras-
tructure. Presented at CRYPTO’96 Rumpsession, 1996.

[15] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. Locating Objects
in Wide-Area Systems. IEEE Commun. Mag., pages 104-109, January 1998.

[16] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A Wide-Area Dis-
tributed System. IEEE Concurrency, pages 70-78, January-March 1999.

[17] M. van Steen, A. Tanenbaum, I. Kuz, and H. Sips. A Scalable Middleware
Solution for Advanced Wide-Area Web Services. Distributed Systems Engi-
neering, 6(1):34-42, March 1999.

16



