8 research outputs found

    Randomized Control Trial of Postnatal rhIGF-1/rhIGFBP-3 Replacement in Preterm Infants: Post-hoc Analysis of Its Effect on Brain Injury

    Get PDF
    Background: Postnatal insulin-like growth factor-1 (IGF-1) replacement with recombinant human (rh)IGF-1 and IGF binding protein-3 (rhIGF-1/rhIGFBP-3) is being studied as a potential treatment to reduce comorbidities of prematurity. We have recently reported on a phase II, multicenter, randomized, controlled trial comparing postnatal rhIGF-1/rhIGFBP-3 replacement with standard of care (SOC) in extremely preterm infants (NCT01096784). Maximum severity of retinopathy of prematurity was the primary endpoint of the trial and presence of GMH-IVH/PHI one of the pre-specified secondary endpoints. Infants therefore received serial cranial ultrasound scans (CUS) between birth and term age. In this post-hoc analysis we present a detailed analysis of the CUS data of this trial and evaluate the effect of postnatal rhIGF-1/rhIGFBP-3 replacement on the incidence of different kinds of brain injury in extremely preterm infants. Methods: This report is an exploratory post-hoc analysis of a phase II trial in which infants <28 weeks gestational age were randomly allocated to rhIGF-1/rhIGFBP-3 or SOC. Serial cranial ultrasounds were performed between birth and term-equivalent age. Presence of germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH), periventricular hemorrhagic infarction (PHI), post-hemorrhagic ventricular dilatation, and white matter injury (WMI) were scored by two independent masked readers. Results: The analysis included 117 infants; 58 received rhIGF-1/rhIGFBP-3 and 59 received SOC. A trend toward less grade II–III GMH-IVH and PHI was observed in treated infants vs. SOC. A subanalysis of infants without evidence of GMH-IVH at study entry (n = 104) showed reduced progression to GMH-IVH in treated infants (25.0% [13/52] vs. 40.4% [21/52]; not significant). No effects of rhIGF-1/rhIGFBP-3 on WMI were observed. Conclusion: The potential protective effect of rhIGF-1/rhIGFBP-3 on the occurrence of GMH-IVH/PHI appeared most pronounced in infants with no evidence of GMH-IVH at treatment start

    MR-safety in clinical practice at 7T : Evaluation of a multistep screening process in 1819 subjects

    No full text
    Introduction: MR facilities must implement and maintain adequate screening and safety procedures to ensure safety during MR examinations. The aim of this study was to evaluate a multi-step MR safety screening process used at a 7T facility regarding incidence of different types of safety risks detected during the safety procedure. Methods: Subjects scheduled for an MR examination and having entered the 7T facility during 2016–2019 underwent a pre-defined multi-step MR safety screening process. Screening documentation of 1819 included subjects was reviewed, and risks identified during the different screening steps were compiled. These data were also related to documented decisions made by a 7T MR safety committee and reported MR safety incidents. Results: Passive or active implants (n = 315) were identified in a screening form and/or an additional documented interview in 305 subjects. Additional information not previously self-reported by the subject, regarding implants necessitating safety decisions performed by the staff was revealed in the documented interview in 102 subjects (106 items). In total, the 7T MR safety committee documented a decision in 36 (2%) of the included subjects. All of these subjects were finally cleared for scanning. Conclusion: A multi-step screening process allows a thorough MR screening of subjects, avoiding safety incidents. Different steps in the process allow awareness to rise and items to be detected that were missed in earlier steps. Implications for practice: Safety questions posed at a single timepoint during an MR screening process might not reveal all safety risks. Repetition and rephrasing of screening questions leads to increased detection of safety risks. This could be effectively mitigated by a multi-step screening process. A multi-disciplinary safety committee is efficient at short notice responding to unexpected safety issues

    Tensor‐valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy

    No full text
    Objective: Delineation of malformations of cortical development (MCD) is central in presurgical evaluation of drug-resistant epilepsy. Delineation using magnetic resonance imaging (MRI) can be ambiguous, however, because the conventional T1- and T2-weighted contrasts depend strongly on myelin for differentiation of cortical tissue and white matter. Variations in myelin content within both cortex and white matter may cause MCD findings on MRI to change size, become undetectable, or disagree with histopathology. The novel tensor-valued diffusion MRI (dMRI) technique maps microscopic diffusion anisotropy, which is sensitive to axons rather than myelin. This work investigated whether tensor-valued dMRI may improve differentiation of cortex and white matter in the delineation of MCD. Methods: Tensor-valued dMRI was performed on a 7 T MRI scanner in 13 MCD patients (age = 32 ± 13 years) featuring periventricular heterotopia, subcortical heterotopia, focal cortical dysplasia, and polymicrogyria. Data analysis yielded maps of microscopic anisotropy that were compared with T1-weighted and T2-fluid-attenuated inversion recovery images and with the fractional anisotropy from diffusion tensor imaging. Results: Maps of microscopic anisotropy revealed large white matter-like regions within MCD that were uniformly cortex-like in the conventional MRI contrasts. These regions were seen particularly in the deep white matter parts of subcortical heterotopias and near the gray-white boundaries of focal cortical dysplasias and polymicrogyrias. Significance: By being sensitive to axons rather than myelin, mapping of microscopic anisotropy may yield a more robust differentiation of cortex and white matter and improve MCD delineation in presurgical evaluation of epilepsy

    Microstructural white matter alterations and hippocampal volumes are associated with cognitive deficits in craniopharyngioma

    No full text
    CONTEXT: Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown.OBJECTIVE: To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP.DESIGN: A cross-sectional study with a median follow-up time of 22 (6-49) years after operation.SETTING: The South Medical Region of Sweden (2.5 million inhabitants).PARTICIPANTS: Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958-2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients.MAIN OUTCOME MEASURES: Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal volumetry.RESULTS: Right uncinate fasciculus was significantly altered (P ≤ 0.01). Microstructural WM alterations in left ventral cingulum were significantly associated with worse performance in visual episodic memory, explaining approximately 50% of the variation. Alterations in dorsal cingulum were associated with worse performance in immediate, delayed recall and recognition, explaining 26-38% of the variation, and with visuospatial ability and executive function, explaining 19-29%. Patients who had smaller hippocampal volume had worse general knowledge (P = 0.028), and microstructural WM alterations in hippocampus were associated with a decline in general knowledge and episodic visual memory.CONCLUSIONS: A structure to function relationship is suggested between microstructural WM alterations in cingulum and in hippocampus with cognitive deficits in CP

    Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity

    No full text
    Background/objectives: Hypothalamic obesity (HO) occurs in 50% of patients with the pituitary tumor craniopharyngioma (CP). Attempts have been made to predict the risk of HO based on hypothalamic (HT) damage on magnetic resonance imaging (MRI), but none have included volumetry. We performed qualitative and quantitative volumetric analyses of HT damage. The results were explored in relation to feeding related peptides and body fat. Subjects/methods: A cross-sectional study of childhood onset CPs involving 3 Tesla MRI, was performed at median 22 years after first operation; 41 CPs, median age 35 (range: 17–56), of whom 23 had HT damage, were compared to 32 controls. After exclusions, 35 patients and 31 controls remained in the MRI study. Main outcome measures were the relation of metabolic parameters to HT volume and qualitative analyses of HT damage. Results: Metabolic parameters scored persistently very high in vascular risk particularly among HT damaged patients. Patients had smaller HT volumes compared to controls 769 (35–1168) mm3 vs. 879 (775–1086) mm3; P < 0.001. HT volume correlated negatively with fat mass and leptin among CP patients (rs = −0.67; P <.001; rs = −0.53; P = 0.001), and explained 39% of the variation in fat mass. For every 100 mm3 increase in HT volume fat mass decreased by 2.7 kg (95% CI: 1.5–3.9; P < 0.001). Qualitative assessments revealed HT damage in three out of six patients with normal volumetry, but HT damage according to operation records. Conclusions: A decrease in HT volume was associated with an increase in fat mass and leptin. We present a method with a high inter-rater reliability (0.94) that can be applied by nonradiologists for the assessment of HT damage. The method may be valuable in the risk assessment of diseases involving the HT
    corecore