17,617 research outputs found

    Magnetic ordering in GaAlAs:Mn double well structure

    Full text link
    The magnetic order in the diluted magnetic semiconductor barrier of double AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo simulations. A confinement adapted RKKY mechanism is implemented for indirect exchange between Mn ions mediated by holes. It is shown that, depending on the barrier width and the hole concentration a ferromagnetic or a spin-glass order can be established.Comment: 3 figure

    On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer

    Full text link
    A self-consistent calculation of the density of states and the spectral density function is performed in a two-dimensional spin-polarized hole system based on a multiple-scattering approximation. Using parameters corresponding to GaMnAs thin layers, a wide range of Mn concentrations and hole densities have been explored to understand the nature, localized or extended, of the spin-polarized holes at the Fermi level for several values of the average magnetization of the Mn ystem. We show that, for a certain interval of Mn and hole densities, an increase on the magnetic order of the Mn ions come together with a change of the nature of the states at the Fermi level. This fact provides a delocalization of spin-polarized extended states anti-aligned to the average Mn magnetization, and a higher spin-polarization of the hole gas. These results are consistent with the occurrence of ferromagnetism with relatively high transition temperatures observed in some thin film samples and multilayered structures of this material.Comment: 3 page

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review

    Thermodynamics of Decaying Vacuum Cosmologies

    Get PDF
    The thermodynamic behavior of vacuum decaying cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density ρ\rho and average number density of photons nn scale with the temperature as ρT4\rho \sim T^{4} and nT3n \sim T^{3}. The temperature law is determined and a generalized Planckian type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon creation are discussed.Comment: 21 pages, uses LATE

    Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures

    Full text link
    The occurrence of inhomogeneous spin-density distribution in multilayered ferromagnetic diluted magnetic semiconductor nanostructures leads to strong dependence of the spin-polarized transport properties on these systems. The spin-dependent mobility, conductivity and resistivity in (Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a function of temperature, scaled by the average magnetization of the diluted magnetic semiconductor layers. An increase of the resistivity near the transition temperature is obtained. We observed that the spin-polarized transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure

    Bethe ansatz solution of the anisotropic correlated electron model associated with the Temperley-Lieb algebra

    Full text link
    A recently proposed strongly correlated electron system associated with the Temperley-Lieb algebra is solved by means of the coordinate Bethe ansatz for periodic and closed boundary conditions.Comment: 21 page

    A semiquantitative approach to the impurity-band-related transport properties of GaMnAs nanolayers

    Full text link
    We investigate the spin-polarized transport of GaMnAs nanolayers in which a ferromagnetic order exists below a certain transition temperature. Our calculation for the self-averaged resistivity takes into account the existence of an impurity band determining the extended ("metallic" transport) or localized (hopping by thermal excitation) nature of the states at and near the Fermi level. Magnetic order and resistivity are inter-related due to the influence of the spin polarization of the impurity band and the effect of the Zeeman splitting on the mobility edge. We obtain, for a given range of Mn concentration and carrier density, a "metallic" behavior in which the transport by extended carriers dominates at low temperature, and is dominated by the thermally excited localized carriers near and above the transition temperature. This gives rise to a conspicuous hump of the resistivity which has been experimentally observed and brings light onto the relationship between transport and magnetic properties of this material
    corecore