185,510 research outputs found

    The risks of mixing dependency lengths from sequences of different length

    Get PDF
    Mixing dependency lengths from sequences of different length is a common practice in language research. However, the empirical distribution of dependency lengths of sentences of the same length differs from that of sentences of varying length and the distribution of dependency lengths depends on sentence length for real sentences and also under the null hypothesis that dependencies connect vertices located in random positions of the sequence. This suggests that certain results, such as the distribution of syntactic dependency lengths mixing dependencies from sentences of varying length, could be a mere consequence of that mixing. Furthermore, differences in the global averages of dependency length (mixing lengths from sentences of varying length) for two different languages do not simply imply a priori that one language optimizes dependency lengths better than the other because those differences could be due to differences in the distribution of sentence lengths and other factors.Comment: Laguage and referencing has been improved; Eqs. 7, 11, B7 and B8 have been correcte

    Unconventional superconducting pairing symmetry induced by phonons

    Full text link
    The possibility of non-s-wave superconductivity induced by phonons is investigated using a simple model that is inspired by Sr2_2RuO4_4. The model assumes a two-dimensional electronic structure, a two-dimensional spin-fluctuation spectrum, and three-dimensional electron-phonon coupling. Taken separately, each interaction favors formation of spin-singlet pairs (of s symmetry for the phonon interaction and dx2y2_{x^2-y^2} symmetry for the spin interaction), but in combination, a variety of more unusual singlet and triplet states are found, depending on the interaction parameters. This may have important implications for Sr2_2RuO4_4, providing a plausible explanation of how the observed spin fluctuations, which clearly favor dx2y2_{x^2-y^2} pairing, may still be instrumental in creating a superconducting state with a different (e.g., p-wave) symmetry. It also suggests an interpretation of the large isotope effect observed in Sr2_2RuO4_4. These results indicate that phonons could play a key role in establishing the order-parameter symmetry in Sr2_2RuO4_4, and possibly in other unconventional superconductors.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Localization of fermionic fields on braneworlds with bulk tachyon matter

    Full text link
    Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to arise the warped braneworld models from bulk tachyon matter, which are endowed with a thin brane and a thick brane. In this framework, we investigate localization of fermionic fields on these branes. As in the 1/2 spin case, the field can be localized on both the thin and thick branes with inclusion of scalar background. In the 3/2 spin extension, the general supergravity action coupled to chiral supermultiplets is considered to produce the localization on both the branes as a result.Comment: 9 pages, no figure

    On the geometry of double field theory

    Full text link
    Double field theory was developed by theoretical physicists as a way to encompass TT-duality. In this paper, we express the basic notions of the theory in differential-geometric invariant terms, in the framework of para-Kaehler manifolds. We define metric algebroids, which are vector bundles with a bracket of cross sections that has the same metric compatibility property as a Courant bracket. We show that a double field gives rise to two canonical connections, whose scalar curvatures can be integrated to obtain actions. Finally, in analogy with Dirac structures, we define and study para-Dirac structures on double manifolds.Comment: The paper will appear in J. Math. Phys., 201

    Identification of photons in double beta-decay experiments using segmented germanium detectors - studies with a GERDA Phase II prototype detector

    Get PDF
    The sensitivity of experiments searching for neutrinoless double beta-decay of germanium was so far limited by the background induced by external gamma-radiation. Segmented germanium detectors can be used to identify photons and thus reduce this background component. The GERmanium Detector Array, GERDA, will use highly segmented germanium detectors in its second phase. The identification of photonic events is investigated using a prototype detector. The results are compared with Monte Carlo data.Comment: 20 pages, 7 figures, to be submitted to NIM-
    corecore