5,574 research outputs found

    Landscape Predictions from Cosmological Vacuum Selection

    Full text link
    In BP models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to "staggering", an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem.Comment: 15 pages, 6 figures, v4 prd format, minor editin

    Inflation and Large Internal Dimensions

    Full text link
    We consider some aspects of inflation in models with large internal dimensions. If inflation occurs on a 3D wall after the stabilization of internal dimensions in the models with low unification scale (M ~ 1 TeV), the inflaton field must be extremely light. This problem may disappear In models with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale. However, in all of these cases the wall inflation does not provide a complete solution to the horizon and flatness problems. To solve them, there must be a stage of inflation in the bulk before the compactification of internal dimensions.Comment: 4 pages, revtex, minor modification

    Dynamical renormalization group methods in theory of eternal inflation

    Full text link
    Dynamics of eternal inflation on the landscape admits description in terms of the Martin-Siggia-Rose (MSR) effective field theory that is in one-to-one correspondence with vacuum dynamics equations. On those sectors of the landscape, where transport properties of the probability measure for eternal inflation are important, renormalization group fixed points of the MSR effective action determine late time behavior of the probability measure. I argue that these RG fixed points may be relevant for the solution of the gauge invariance problem for eternal inflation.Comment: 11 pages; invited mini-review for Grav.Cos

    Living with ghosts in Lorentz invariant theories

    Full text link
    We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We provide an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.Comment: 17 pages, comments and references adde

    Vacuum Decay on a Brane World

    Get PDF
    The bubble nucleation rate for a first order phase transition occurring on a brane world is calculated. Both the Coleman-de Luccia thin wall instanton and the Hawking-Moss instanton are considered. The results are compared with the corresponding nucleation rates for standard four-dimensional gravity.Comment: 5 page

    Towards a gauge invariant volume-weighted probability measure for eternal inflation

    Full text link
    An improved volume-weighted probability measure for eternal inflation is proposed. For the models studied in this paper it leads to simple and intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde

    Nuclear Physics in a Susy Universe

    Full text link
    We refine a previous zeroth order analysis of the nuclear properties of a supersymmetric (susy) universe with standard model particle content plus degenerate susy partners. No assumptions are made concerning the Higgs structure except we assume that the degenerate fermion/sfermion masses are non-zero. This alternate universe has been dubbed Susyria and it has been proposed that such a world may exist with zero vacuum energy in the string landscape.Comment: 8 pages, 1 figur

    Phase transition in scalar Ï•4\phi^4-theory beyond the super daisy resummations

    Full text link
    The temperature phase transition in scalar Ï•4(x)\phi^4(x) field theory with spontaneous symmetry breaking is investigated in a partly resummed perturbative approach. The second Legendre transform is used and the resulting gap equation is considered in the extrema of the free energy functional. It is found that the phase transition is of first order in the super daisy as well as in a certain beyond super daisy resummations. No unwanted imaginary parts in the free energy are found but a loss of the smallness of the effective expansion parameter near the phase transition temperature is found in both cases. This means an insufficiency of the resummations or a deficit of the perturbative approach.Comment: 14 page

    Functional Approach to Stochastic Inflation

    Full text link
    We propose functional approach to the stochastic inflationary universe dynamics. It is based on path integral representation of the solution to the differential equation for the scalar field probability distribution. In the saddle-point approximation scalar field probability distributions of various type are derived and the statistics of the inflationary-history-dependent functionals is developed.Comment: 20 pages, Preprint BROWN-HET-960, uses phyzz

    Integral functions of electron lateral distribution and their fluctuations in electron-photon cascades

    Get PDF
    Monte Carlo simulated lateral distribution functions for electrons of EPC developing in lead, at superhigh energies (.1-1 PeV) for depths t or = 60 c.u. delta t=1t. c.u. are presented. The higher moment characteristics, i.e., variation, asymmetry, excess, are presented along with analytical solutions for the same characteristics at fixed observation level calculated to theory approximations A and B by using numerical inversion of the Laplace transformation. The conclusion is made of a complex, usually non-Gaussian shape of the function of the particle number distribution within a circle of given radius at fixed depth
    • …
    corecore