
Vacuum decay on a brane world

Stephen C. Davis and Sylvain Bréchet
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The bubble nucleation rate for a first order phase transition occurring on a brane world is calculated.
Both the Coleman-de Luccia thin wall instanton and the Hawking-Moss instanton are considered. The
results are compared with the corresponding nucleation rates for standard four-dimensional gravity.
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I. INTRODUCTION

It is widely believed that as the universe cools it under-
goes a series of phase transitions. Each of these involves a
transition from a metastable ‘‘false vacuum’’ ground state
to a stable one, the ‘‘true vacuum’’. In the case of a first
order transition, this change is initiated by the nucleation of
bubbles of true vacuum. These then expand at a speed
asymptotically approaching that of light, converting false
vacuum into true as they grow. The decay of false vacuum
was first studied by Kobzarev, Okun and Voloshin [1]. It
was shown by Coleman [2] that the nucleation rate could
be calculated using instantons. This was extended by
Coleman and de Luccia, who showed that the rate at which
the decay occurs is altered by gravity [3]. This will be most
significant in the early universe when the curvature is high.
Most previous work on the effects of gravity on vacuum
decay has assumed, not surprisingly, that gravity is de-
scribed by general relativity. However this may not be true,
in which case the phase transition, and any related pro-
cesses such as defect formation, will be altered.

There has been a lot of interest in the string-motivated
brane world scenario, in which our universe is a 3-brane
embedded in a higher dimensional ‘‘bulk’’ space-time. The
extra dimensional effects produce modifications to gravity.
The particular brane model that we will consider is the
Randall-Sundrum II model [4], which has a single extra
dimension and a warped bulk spacetime. The warping
allows conventional gravity to be obtained on the brane
in the small curvature limit. However in more extreme
circumstances, such as during the early universe [5], grav-
ity will behave differently.

In this article we calculate the vacuum decay rate on a
brane world. In Sec. II we extend the work of Coleman and
de Luccia (CdL) to the Randall-Sundrum model. Analytic
determination of the correct instanton for this method is not
possible, and so we will instead use some approximate
solutions. In Sec. III we look at the CdL thin wall instan-
ton, and consider some limiting cases of it. In Sec. IV we
find the decay rate for the Hawking-Moss instanton [6].
Although we are unable to provide a completely general
analysis, our results do allow vacuum decay in the brane
world to be compared with the results for standard gravity.

II. BOUNCE ACTION

We will consider a toy model with one scalar field, �,
whose potential is U���. The potential has minima at �F

and �T, and UF � U��F� is greater than UT � U��T�.
Thus � � �F is a metastable false vacuum state, and � �
�T is the global minimum of the potential and hence the
true vacuum state. In this article we will take UF and UT to
be both positive.

In the semiclassical limit, the bubble nucleation rate per
unit volume is given by [2]

�=V � Ae�B= �h�1 �O� �h��: (1)

The bounce action, B, is defined as

B � SE��� � SE��F� (2)

where SE is the Euclidean action, defined as minus the
analytic continuation of the usual action to imaginary time.
The instanton �, called the ‘‘bounce’’, is the solution of the
field equations which minimizes B and which traverses the
potential barrier between the true and false vacuums. In
this article we will ignore the factor A, and just determine
B, since it gives the dominant contribution to the behavior
of �=V.

For a brane world, with a Z2 symmetric bulk, the
Euclidean action is given by SE � S�B�

E � S�b�
E , where the

bulk and brane contributions are respectively

S�B�
E �

1

2�2
5

Z
d5x

���
g

p
��R�5� � 2�5�; (3)

S�b�
E �

1

�2
5

Z
d4x

���
h

p
�2K � �4�

�
Z

d4x
���
h

p �
1

2
�D��2 �U���

�
: (4)

The induced metric metric on the brane is hab � gab �
nanb, where na is the (outward) brane normal. K � habKab
is the Gibbons-Hawking boundary term [7], with Kab �
hc
arcnb being the extrinsic curvature. Although we have a

five dimensional gravity theory, the scalar field is restricted
to the brane. The induced derivative is defined as Da� �
hb
arb�.
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As with the Randall-Sundrum model, we take �5 �
�6=‘2 and �4 � 6=‘. We could have absorbed �4 into
U, although by keeping them separate we can more easily
compare our results with those of standard four-
dimensional gravity. The effective four-dimensional gravi-
tational coupling on the brane is given by �2 � �2

5=‘.
Variation of the action gives the field equations

G�5�
ab � �5gab � 0 (5)

�2�Kab � Khab� � �4hab

� �2
5

�
Da�Db��

1

2
hab�D��2 � habU���

�
(6)

D2� �
dU
d�

: (7)

In flat space the bounce is O�4� symmetric [8]. This is
usually assumed when Einstein gravity is included in the
theory, and we will also assume it for the brane world. This
implies

ds2
brane � d�2 � a���2d�2

3; � � ����; (8)

where d�2
3 is the metric of S3. For the solution to have a

finite action, we require a�0� � a��max� � 0 and _��0� �
_���max� � 0.

The general O�4� symmetric solution of the field
Eqs. (5)–(7) can be obtained be analytically continuing a
brane world cosmology solution. Using the results of Ida
[9], we obtain

ds2
Bulk � f�r�d�2 �

dr2

f�r�
� r2d�2

3; (9)

where f�r� � 1 � r2=‘2 � C=r2. The parameter C corre-
sponds to the black hole mass in the original cosmological
solution. A brane-based observer would perceive it as
‘‘dark radiation’’. The position of the brane is given by r �
a���, � � �b���. In each half of the Z2 symmetric bulk, r
ranges from 0 to a.

The brane field Eqs. (6) and (7) reduce to

_a2

a2
�

f�a�

a2 �

�
�2

5

6

�
U �

_�2

2

�
�

1

‘

�
2
; (10)

���
3 _a
a

_��
dU���

d�
� 0: (11)

The fact that the two metrics agree at r � a, gives us the
relation

d�

d�
�

���������������������
f�a� � _a2

p
f�a�

(12)

on the brane.
With the aid of the field Eq. (5), the bulk part of the

action simplifies to

S�B�
E � �

8!2

3�2
5

�5

Z r�a

r�0
r3drd�: (13)

Integrating with respect to r, and using the relation (12), we
obtain

S�B�
E �

2!2

3‘2

Z
d�

a5

f�a�

�
U �

_�2

2
�

6

�2
5‘

�
: (14)

Using the trace of the junction condition (6), the brane
part of the action reduces to

S�b�
E � �

2!2

3

Z
d�a3

�
U �

_�2

2
�

6

�2
5‘

�
: (15)

Before we try to evaluate the expression for B �
SE��� � SE��F�, it is convenient to add a total derivative
of the form ��2=�2�@��a _a2� to the action. This will not
alter the value of B, although it does make the thin wall
approximation (see next section) easier to apply. Adding
together all the above contributions to the action, we obtain

SE��� � 2!2
Z

d�a3

�
2U �

1

3

�
U �

_�2

2

�

�

�
a2

‘2f�a�
� 1 �

�2
5‘

2

� _�2

2
�U

�	

�
2

�2
5‘

�
a2

‘2f�a�
�

‘2

a2 �f�a� � 1�
��

: (16)

III. THIN WALL APPROXIMATION

The expression for B � SE��� � SE��F� is too compli-
cated to evaluate analytically, so we will instead use the
thin wall approximation. This consists of taking the bounce
instanton to be a ball of true vacuum surrounded by false
vacuum, with a thin wall at a � �a separating the two
regions. Away from the wall � is constant and so the action
simplifies considerably. The thin wall approximation holds
when the wall thickness is far smaller than �a, which will be
the case when the energy difference # � UF �UT is small
compared to the barrier height.

On the wall a is roughly constant, and so in the scalar
field Eq. (11) the second term can be dropped. We also
approximate the potential on the wall by U0��� � U��� �
O�#�. The approximate potential U0 also has minimums at
�T and �F, but with U0��F� � U0��T�. To leading order
in #, we can approximate the equation for � on the wall by
�� � dU0=d�. This is solved by

1

2
� _��2 �U0��� � �U0��F�; (17)

which allows the leading order contribution to B from the
wall to be obtained.

We will now use the thin wall approximation for the
brane action (16), and evaluate the parameter B. For sim-
plicity we will assume there is no black hole in the bulk
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space, so C � 0. For the space outside the wall we have
Boutside � SE��F� � SE��F� � 0. On the wall we use the
expression (17) and a � �a, to obtain

Bwall � SE��� � SE��F� � 2!2 �a3$0S1; (18)

where $0 � �1 � �2
5‘U0��F�=6� and

S1 �
Z �F

�T

d�f2�U0��� �U0��F��g
1=2: (19)

Before evaluating the contribution to B from inside the
wall, we will define some notation

$i � 1 �
�2

5‘Ui

6
; (20)

H2
i �

�4
5

36
U2

i �
�2

5

3‘
Ui �

$2
i � 1

‘2 : (21)

with i being ‘‘T‘‘ or ‘‘F‘‘.
Inside the wall, � is a constant. The Friedmann Eq. (10)

implies

d� � �da�1 �H2
Ta

2��1=2: (22)

The choice of sign depends on which half of the four-
dimensional spacetime we are in. The positive sign applies
when � is near 0, and the negative sign when it is near �max.
We see that the above coordinate change is not one to one
and that, for a given �a, there are two possible CdL
instantons.

If the upper sign in Eq. (22) applies for the entire region
inside the wall then, after changing variables, we obtain
Binside � S��T; �a� � S��F; �a�, where

S��i; b� �
4!2

�2

Z b

0

ada

�1 �H2
i a

2�1=2

�

�
1 �

a2

‘2 � a2 $i � 3�1 �H2
i a

2�

�
; (23)

i.e. the contribution to SE (for constant �) from the region
0 < a < b. The above expression evaluates to

S��i; a� �
4!2

�2

�
‘2

2
ln
�

��������������������
1 �H2

i a
2

q
� $i��1 � $i�

�
��������������������
1 �H2

i a
2

q
� $i��1 � $i�

�
‘2

$i � 1
�1 �H2

i a
2�1=2

�
1

H2
i

�1 �H2
i a

2�3=2 �
$i

H2
i

�
(24)

which will give Binside.
It is also possible to have a thin wall instanton which has

different signs in the relation (22) on different sides of the
wall. In this case the part of SE��F� inside the wall will
have contributions from both halves of the spacetime, and
we find

Binside � S��T; �a� � 2S��F; 1=HF� � S��F; �a� (25)

with 1=HF being the maximum value of a for � � �F.
The expression (1) for �=V is evaluated for the instanton

which minimizes the action B. We can estimate this by
minimizing the our approximate expression for B with
respect to �a. Using the above expressions, we find that
this is the case when

3

2
�2 �aS1$0 �

��
1 �

�a2

‘2 � �a2 $T

	
�1 �H2

T �a2��1=2

� 3�1 �H2
T �a2�1=2

�
� (fT $ Fg � 0: (26)

The sign ( is equal to �1 if the expression (25) is appli-
cable, and 1 otherwise.

At late times brane cosmology will reduce to standard
four-dimensional cosmology. This occurs when ‘ is small
relative to other length scales in the theory. Similarly we
expect to obtain the usual four-dimensional tunnelling rate
when ‘ is small. Taking ‘ � 6=��2

5U� and ‘ � �a, the
equations for B and �a reduce to the conventional expres-
sions, as obtained by Parke [10].

Even with the simplifications resulting from the thin
wall approximation, Eq. (26) is still algebraically compli-
cated. Rather than trying to solve it analytically, it is more
instructive to look at various limiting cases. Gravitational
effects will be most significant when the vacuum energy or
the barrier size is large, and so we will concentrate on these
limiting cases.

A. Large Vacuum Energy Limit

The expression for �a will simplify if we suppose that
UF; UT � #. In this case �a will be close to its maximal
value, and so �a2 � �1 � )�=H2

F with #=U � ) � 1. We
take ( � 1 in Eq. (26).

If �2
5‘UF � ), then higher dimensional contributions to

gravity will be small. In this case we obtain the same
results as for standard four-dimensional gravity. These
are )� #2=��2US2

1� and

B4D �
6

���
3

p
!2S1

�3U3=2
: (27)

The limits used will be self consistent if #=U �
S2

1�
2=# � 1 and ‘ � #=�S1�2U�. This case is contained

within the limit (i) in Ref. [10]. For comparison, the bounce
action in the absence of gravity is B0 � 27!2S4

1=�2#
3�, and

so we see that the effects of gravitation decrease B.
For higher vacuum energies brane gravity effects will be

important. They will be most significant when �2
5‘U � 1.

In this limiting brane gravity case )3=2 � #=��2
5US1� and

BBW �
72!2‘S1

�3�5‘1=2U2
� B4D: (28)

Consistency requires #=��2
5‘U

2��S2
1�

2=#�U=��2
5‘#

2�.
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For both the above expressions, it is the contribution
from the wall that dominates B. The inclusion of gravita-
tion in the theory reduces B, and so increases the nuclea-
tion rate. If we use brane gravity instead of conventional
gravity, the nucleation rate is increased even further, espe-
cially when U is greater than the brane tension, �4=�2

5.

B. Large Barrier Limit

We can also obtain approximate analytic expressions for
�a and B when HF �a � 1 and ( � �1. This implies that the
bounce instanton is close to the maximum size that will fit
in the spacetime. This case corresponds to the limit (ii)
considered in Ref. [10].

For �2
5‘UF � 1 we re-obtain the result for conventional

gravity. This has �a� 1=��2S2
1� and, using Eq. (25),

B4D �
24!2

�4UF

: (29)

This limit is valid when �2S2
1 � UF, in other words when

the barrier height is large compared to the vacuum energy.
Brane effects will be most significant when �2

5‘UF � 1.
In this case we find �a� �2

5‘S1 and

BBW �
1152!2

�4�4
5‘

2U3
F

� B4D (30)

which is valid when �4
5S

2
1 � 1=��2

5‘UF�.
For this limiting case the dominant contribution to B

comes from the region inside the wall. Again we wee that
gravity increases the nucleation rate, and brane gravity
increases it even more.

IV. HAWKING-MOSS INSTANTON

As well as the approximate CdL instanton, we will also
consider the Hawking-Moss instanton. For this � is a
constant, and sits at the top of the potential barrier, which
we denote by � � �M. If U��� is very large, it is expected
that the Hawking-Moss instanton will provide a better
approximation of bounce than the thin wall CdL instanton.
The bounce action is B � 2S��M; 1=HM� �
2S��F; 1=HF�, which evaluates to

B �
4!2

�2

�
‘2

2
ln
�$M � 1��$F � 1�

�$M � 1��$F � 1�
�

$M

H2
M

�
$F

H2
F

�
: (31)

For small �2
5‘U this reduces to the standard result

B4D �
24!2

�4

�
1

UF
�

1

UM

�
: (32)

On the other hand if �2
5‘U � 1, brane effects will domi-

nate and

BBW �
1152!2

�4�4
5‘

2

�
1

U3
F

�
1

U3
M

�
� B4D: (33)

As with CdL instanton, we see that brane effects signifi-
cantly reduce B, and hence increase the nucleation rate.

V. CONCLUSION

We have evaluated the bubble nucleation rate for first
order phase transitions on a Randall-Sundrum brane world.
If the potential is smaller than the brane tension, we obtain
(to leading order) the standard four-dimensional results.
This is not surprising, since for small curvature, brane
gravity reduces to standard four-dimensional general rela-
tivity. On the other hand if the potential is larger than the
brane tension, the nonstandard brane gravity effects will be
significant. In all the cases that we considered, the nuclea-
tion rate was significantly increased by brane gravity. This
suggests that, at least for positive definite potentials, the
nucleation rate in brane models will be higher than for
conventional gravity. This is analogous to the situation in
brane cosmology, where the Hubble parameter is larger
than in the equivalent conventional cosmology.

To fully model a phase transition, we also need to
consider the expansion of the bubbles after nucleation. In
other work it has been shown that for brane models a higher
nucleation rate is required for the transitions to complete
successfully [11]. Our results suggest this problem could
be fixed by the brane gravity. However it should be noted
that in the early universe finite temperature effects [12] will
be significant, and our expressions are for T � 0. As well
as corrections to B, the factor A in Eq. (1) also needs to be
determined. On dimensional grounds this is usually taken
to be of order T4. However for �2

5‘T
4 � 1 brane gravity

effects will be significant and we would expect A to be
some combination of T4 and �2

5‘ instead. If this is the case
the analysis of Ref. [11] (which assumes A� T4) will also
be altered.
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