46 research outputs found

    Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    Get PDF
    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse

    Differential Contribution of Rod and Cone Circadian Clocks in Driving Retinal Melatonin Rhythms in Xenopus

    Get PDF
    Background: Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release. Methodology/Principal Findings: We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLDQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLDQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLDQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLDQ transgenic tadpoles compare to wildtype counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern. Conclusions/Significance: These results suggest that although the Xenopus retina is made up of approximately equa

    Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography

    Get PDF
    Skeletal muscle operates as a near-constant volume system; as such muscle shortening during contraction is transversely linked to radial deformation. Therefore, to assess contractile properties of skeletal muscle, radial displacement can be evoked and measured. Mechanomyography measures muscle radial displacement and during the last 20 years, tensiomyography has become the most commonly used and widely reported technique among the various methodologies of mechanomyography. Tensiomyography has been demonstrated to reliably measure peak radial displacement during evoked muscle twitch, as well as muscle twitch speed. A number of parameters can be extracted from the tensiomyography displacement/time curve and the most commonly used and reliable appear to be peak radial displacement and contraction time. The latter has been described as a valid non-invasive means of characterising skeletal muscle, based on fibre-type composition. Over recent years, applications of tensiomyography measurement within sport and exercise have appeared, with applications relating to injury, recovery and performance. Within the present review, we evaluate the perceived strengths and weaknesses of tensiomyography with regard to its efficacy within applied sports medicine settings. We also highlight future tensiomyography areas that require further investigation. Therefore, the purpose of this review is to critically examine the existing evidence surrounding tensiomyography as a tool within the field of sports medicine

    Ammodytoxin A acceptor in bovine brain synaptic-membranes

    No full text
    Ammodytoxin A, the presynaptic neurotoxin from Vipera ammodytes ammodytes venom, was found to bind specifically and with high affinity to bovine cortex synaptic membrane preparation. The detected ammodytoxin A high-affinity binding was characterized by equilibrium binding analysis which revealed a single high-affinity binding site with Kd 4.13 nM and Bmax 6.67 pmoles/mg of membrane protein. 125I-ammodytoxin A was covalently cross-linked to its neuronal acceptor using a chemical cross-linking technique. As revealed by subsequent SDS-PAGE analysis and autoradiography, 125I-ammodytoxin A specifically attached to membrane components with apparent mol. wts 53,000-56,000. Besides by the native ammodytoxin A, the binding of radioiodinated ammodytoxin A to the neuronal acceptor was highly attenuated, also by other two iso-neurotoxins from V. a. ammodytes venom, ammodytoxins B and C, and neurotoxin crotoxin B from the venom of the South American rattlesnake (Crotalus durissus terrificus). Vipera berus berus phospholipase A2 was a weaker inhibitor, whereas nontoxic phospholipase A2, ammodytoxin I2 and myotoxic phospholipase A2 homologue, ammodytin L, both from V. a. ammodytes venom as well, were very weak inhibitors. No inhibitory effect on 125I-ammodytoxin A specific binding at all was, however, obtained with α-dendrotoxin, β-bungarotoxin and crotoxin A, respectively. Treatment of synaptic membranes with proteinase K and Staphylococcus aureus V-8 proteinase, a combination of PNGase F and neuroaminidase, heat or acid lowered the 125I-ammodytoxin A specific binding to various extents but never completely abolished it. The ammodytoxin A binding site in bovine synaptic membranes is thus most likely a combination of membrane glycoprotein acceptor and membrane phospholipids. As ammodytoxin A reduced the second negative component of the perineural waveform, measured on mouse triangularis sterni preparation, which is very likely a result of an inhibition of a fraction of the terminal K+ currents, the ammodytoxin A acceptor could well be connected with K+ channels

    Neurotoxicity of ammodytoxin A in the envenoming bites of vipera ammodytes ammodytes

    No full text
    Envenoming bites by Vipera ammodytes ammodytes (the long-nosed viper) can cause life-threatening neurotoxicity, particularly in children. We investigated the mechanisms of the neurotoxicity of ammodytoxin A, the principal toxin in the venom of these snakes, in isolated nerve-muscle preparations from mice. The toxin was bound selectively to the neuromuscular junction, and at concentrations similar to those likely to be found in the circulation of young bite victims, it blocked the response of the muscle to indirect but not direct stimulation. Electron microscopy showed that the toxin induced a small but insignificant depletion of synaptic vesicles from motor nerve terminals; nerve terminal mitochondria were swollen and damaged, but plasma membranes of terminal boutons were undamaged. Exposure to the toxin did not affect postjunctional acetylcholine receptors or cause structural damage to preterminal motor axons or muscle fibers. Spontaneous transmitter release was similarly unaffected. Taken together, these results indicate that ammodytoxin A is the principal agent involved in the neurotoxic activity of the venom of V ammodytes ammodytes and that the underlying cause of the failure of transmission may be the deenergization of the nerve terminal resulting from mitochondrial degeneration and subsequent impairment of coupling between the action-potential-induced depolarization of the nerve terminal and the evoked transmitter release. (C) 2008 American Association of Neuropathologists, In
    corecore