78 research outputs found

    Mieap, a p53-Inducible Protein, Controls Mitochondrial Quality by Repairing or Eliminating Unhealthy Mitochondria

    Get PDF
    Maintenance of healthy mitochondria prevents aging, cancer, and a variety of degenerative diseases that are due to the result of defective mitochondrial quality control (MQC). Recently, we discovered a novel mechanism for MQC, in which Mieap induces intramitochondrial lysosome-like organella that plays a critical role in the elimination of oxidized mitochondrial proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria). However, a large part of the mechanisms for MQC remains unknown. Here, we report additional mechanisms for Mieap-regulated MQC. Reactive oxygen species (ROS) scavengers completely inhibited MALM. A mitochondrial outer membrane protein NIX interacted with Mieap in a ROS-dependent manner via the BH3 domain of NIX and the coiled-coil domain of Mieap. Deficiency of NIX also completely impaired MALM. When MALM was inhibited, Mieap induced vacuole-like structures (designated as MIV for Mieap-induced vacuole), which engulfed and degraded the unhealthy mitochondria by accumulating lysosomes. The inactivation of p53 severely impaired both MALM and MIV generation, leading to accumulation of unhealthy mitochondria. These results suggest that (1) mitochondrial ROS and NIX are essential factors for MALM, (2) MIV is a novel mechanism for lysosomal degradation of mitochondria, and (3) the p53-Mieap pathway plays a pivotal role in MQC by repairing or eliminating unhealthy mitochondria via MALM or MIV generation, respectively

    DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose

    Get PDF
    Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions

    HIV Aspartyl Peptidase Inhibitors Interfere with Cellular Proliferation, Ultrastructure and Macrophage Infection of Leishmania amazonensis

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2019-01-08T13:43:09Z No. of bitstreams: 1 Ellenf_Altoe_etal_IOC_2009.pdf: 1452755 bytes, checksum: 77127a59920cef6bca71296107f6ec63 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-01-08T13:51:34Z (GMT) No. of bitstreams: 1 Ellenf_Altoe_etal_IOC_2009.pdf: 1452755 bytes, checksum: 77127a59920cef6bca71296107f6ec63 (MD5)Made available in DSpace on 2019-01-08T13:51:34Z (GMT). No. of bitstreams: 1 Ellenf_Altoe_etal_IOC_2009.pdf: 1452755 bytes, checksum: 77127a59920cef6bca71296107f6ec63 (MD5) Previous issue date: 2009Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de Microbiologia Prof. Paulo de GĂłes. Departamento de Microbiologia Geral,. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de BiofĂ­sica Carlos Chagas Filho. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de Microbiologia Prof. Paulo de GĂłes. Departamento de Microbiologia Geral,. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de CiĂȘncias da SaĂșde. Instituto de Microbiologia Prof. Paulo de GĂłes. Departamento de Microbiologia Geral,. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas. Rio de Janeiro, RJ. Brasil.Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis

    A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast

    Get PDF
    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase–mediated dUTP Nick End Labeling (TUNEL) and 4,6â€Č-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of Διmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency

    Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation

    Get PDF
    Background: Chemotherapy-induced reduction in tumor load is a function of apoptotic cell death, orchestrated by intracellular caspases. However, the effectiveness of these therapies is compromised by mutations affecting specific genes, controlling and/or regulating apoptotic signaling. Therefore, it is desirable to identify novel pathways of cell death, which could function in tandem with or in the absence of efficient apoptotic machinery. In this regard, recent evidence supports the existence of a novel cell death pathway termed autophagy, which is activated upon growth factor deprivation or exposure to genotoxic compounds. The functional relevance of this pathway in terms of its ability to serve as a stress response or a truly death effector mechanism is still in question; however, reports indicate that autophagy is a specialized form of cell death under certain conditions. Methodology/Principal Findings: We report here the simultaneous induction of non-canonical autophagy and apoptosis in human cancer cells upon exposure to a small molecule compound that triggers intracellular hydrogen peroxide (H2O2) production. Whereas, silencing of beclin1 neither inhibited the hallmarks of autophagy nor the induction of cell death, Atg 7 or Ulk1 knockdown significantly abrogated drug-induced H2O2-mediated autophagy. Furthermore, we provide evidence that activated extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) are upstream effectors controlling both autophagy and apoptosis in response to elevated intracellular H2O2. Interestingly, inhibition of JNK activity reversed the increase in Atg7 expression in this system, thus indicating that JNK may regulate autophagy by activating Atg7. Of note, the small molecule compound triggered autophagy and apoptosis in primary cells derived from patients with lymphoma, but not in non-transformed cells. Conclusions/Significance: Considering that loss of tumor suppressor beclin 1 is associated with neoplasia, the ability of this small molecule compound to engage both autophagic and apoptotic machineries via ROS production and subsequent activation of ERK and JNK could have potential translational implications.Singapore. Biomedical Research CouncilSingapore. Ministry of Educatio

    Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    Get PDF
    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∌4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Autophagy: Regulation and role in disease

    Full text link

    Mitophagy in yeast : actors and physiological roles

    No full text
    International audienceMitochondria are essential for oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondria also monitor and evaluate complex information from the environment and intracellular milieu, including the presence or absence of growth factors, oxygen, reactive oxygen species, and DNA damage. It follows that disturbances of the integrity of mitochondrial function lead to the disruption of cell function, expressed as disease, aging, or cell death. It has been assumed that the degradation of damaged mitochondria by an autophagy-related pathway specific to mitochondria (mitophagy), recently found to be strictly regulated, is a fundamental process essential for cell homeostasis. Until now, the main role of mitophagy has been tentatively defined as a 'house-cleaning' pathway that allows to eliminate altered mitochondria, but mitophagy may also play a role in the adaptation of the number and quality of mitochondria to new environmental conditions. In yeast, recent data defined two categories of mitophagy actors: ones constitutively required for mitophagy and those with mitophagy-regulatory functions. Situations were also uncovered in normal physiology in which cells utilize mitophagy to eliminate damaged, dysfunctional, and superfluous mitochondria to adjust to changing physiological demands
    • 

    corecore