9 research outputs found

    Let's get the numbers!

    No full text
    Alf Pr\uf8ysen, the Norwegian storyteller for children, told about the clever little billy-goat kid who counted his fellow animals at the farm: I am one and the calf is two. . . . Not knowing the purpose of counting, animosity arose among the other animals; they ran along chasing him to make him stop. Eventually, they all ended up in great danger where the kid\u2019s knowledge of counting helped save their day. The tale illustrates our opposition to numbers when the benefits are obscure. In anaesthesiology and intensive care, we continuously make decisions on management and are in need of reliable and precise information \u2013 which may come from numbers

    Intensive care doctors' preferences for arterial oxygen tension levels in mechanically ventilated patients

    No full text
    Background: Oxygen is liberally administered in intensive care units (ICUs). Nevertheless, ICU doctors’ preferences for supplementing oxygen are inadequately described. The aim was to identify ICU doctors’ preferences for arterial oxygenation levels in mechanically ventilated adult ICU patients. Methods: In April to August 2016, an online multiple-choice 17-part-questionnaire was distributed to 1080 ICU doctors in seven Northern European countries. Repeated reminder e-mails were sent. The study ended in October 2016. Results: The response rate was 63%. When evaluating oxygenation 52% of respondents rated arterial oxygen tension (PaO2) the most important parameter; 24% a combination of PaO2 and arterial oxygen saturation (SaO2); and 23% preferred SaO2. Increasing, decreasing or not changing a default fraction of inspired oxygen of 0.50 showed preferences for a PaO2 around 8 kPa in patients with chronic obstructive pulmonary disease, a PaO2 around 10 kPa in patients with healthy lungs, acute respiratory distress syndrome or sepsis, and a PaO2 around 12 kPa in patients with cardiac or cerebral ischaemia. Eighty per cent would accept a PaO2 of 8 kPa or lower and 77% would accept a PaO2 of 12 kPa or higher in a clinical trial of oxygenation targets. Conclusion: Intensive care unit doctors preferred PaO2 to SaO2 in monitoring oxygen treatment when peripheral oxygen saturation was not included in the question. The identification of PaO2 as the preferred target and the thorough clarification of preferences are important when ascertaining optimal oxygenation targets. In particular when designing future clinical trials of higher vs lower oxygenation targets in ICU patients

    Intensive care doctors’ preferences for arterial oxygen tension levels in mechanically ventilated patients

    No full text
    Background: Oxygen is liberally administered in intensive care units (ICUs). Nevertheless, ICU doctors’ preferences for supplementing oxygen are inadequately described. The aim was to identify ICU doctors’ preferences for arterial oxygenation levels in mechanically ventilated adult ICU patients. Methods: In April to August 2016, an online multiple-choice 17-part-questionnaire was distributed to 1080 ICU doctors in seven Northern European countries. Repeated reminder e-mails were sent. The study ended in October 2016. Results: The response rate was 63%. When evaluating oxygenation 52% of respondents rated arterial oxygen tension (PaO2) the most important parameter; 24% a combination of PaO2 and arterial oxygen saturation (SaO2); and 23% preferred SaO2. Increasing, decreasing or not changing a default fraction of inspired oxygen of 0.50 showed preferences for a PaO2 around 8 kPa in patients with chronic obstructive pulmonary disease, a PaO2 around 10 kPa in patients with healthy lungs, acute respiratory distress syndrome or sepsis, and a PaO2 around 12 kPa in patients with cardiac or cerebral ischaemia. Eighty per cent would accept a PaO2 of 8 kPa or lower and 77% would accept a PaO2 of 12 kPa or higher in a clinical trial of oxygenation targets. Conclusion: Intensive care unit doctors preferred PaO2 to SaO2 in monitoring oxygen treatment when peripheral oxygen saturation was not included in the question. The identification of PaO2 as the preferred target and the thorough clarification of preferences are important when ascertaining optimal oxygenation targets. In particular when designing future clinical trials of higher vs lower oxygenation targets in ICU patients

    Performance of a capnodynamic method estimating effective pulmonary blood flow during transient and sustained hypercapnia

    No full text
    The capnodynamic method is a minimally invasive method continuously calculating effective pulmonary blood flow (COEPBF), equivalent to cardiac output when intra pulmonary shunt flow is low. The capnodynamic equation joined with a ventilator pattern containing cyclic reoccurring expiratory holds, provides breath to breath hemodynamic monitoring in the anesthetized patient. Its performance however, might be affected by changes in the mixed venous content of carbon dioxide (CvCO2). The aim of the current study was to evaluate COEPBF during rapid measurable changes in mixed venous carbon dioxide partial pressure (PvCO2) following ischemia-reperfusion and during sustained hypercapnia in a porcine model. Sixteen pigs were submitted to either ischemia-reperfusion (n = 8) after the release of an aortic balloon inflated during 30 min or to prolonged hypercapnia (n = 8) induced by adding an instrumental dead space. Reference cardiac output (CO) was measured by an ultrasonic flow probe placed around the pulmonary artery trunk (COTS). Hemodynamic measurements were obtained at baseline, end of ischemia and during the first 5 min of reperfusion as well as during prolonged hypercapnia at high and low CO states. Ischemia-reperfusion resulted in large changes in PvCO2, hemodynamics and lactate. Bias (limits of agreement) was 0.7 (-0.4 to 1.8) L/min with a mean error of 28% at baseline. COEPBF was impaired during reperfusion but agreement was restored within 5 min. During prolonged hypercapnia, agreement remained good during changes in CO. The mean polar angle was -4.19A degrees (-8.8A degrees to 0.42A degrees). Capnodynamic COEPBF is affected but recovers rapidly after transient large changes in PvCO2 and preserves good agreement and trending ability during states of prolonged hypercapnia at different levels of CO
    corecore