826 research outputs found

    Spin injection and electric field effect in degenerate semiconductors

    Full text link
    We analyze spin-transport in semiconductors in the regime characterized by T∼<TFT\stackrel{<}{\sim}T_F (intermediate to degenerate), where TFT_F is the Fermi temperature. Such a regime is of great importance since it includes the lightly doped semiconductor structures used in most experiments; we demonstrate that, at the same time, it corresponds to the regime in which carrier-carrier interactions assume a relevant role. Starting from a general formulation of the drift-diffusion equations, which includes many-body correlation effects, we perform detailed calculations of the spin injection characteristics of various heterostructures, and analyze the combined effects of carrier density variation, applied electric field and Coulomb interaction. We show the existence of a degenerate regime, peculiar to semiconductors, which strongly differs, as spin-transport is concerned, from the degenerate regime of metals.Comment: Version accepted for publication in Phys. Rev.

    Spin Precession and Oscillations in Mesoscopic Systems

    Full text link
    We compare and contrast magneto-transport oscillations in the fully quantum (single-electron coherent) and classical limits for a simple but illustrative model. In particular, we study the induced magnetization and spin current in a two-terminal double-barrier structure with an applied Zeeman field between the barriers and spin disequilibrium in the contacts. Classically, the spin current shows strong tunneling resonances due to spin precession in the region between the two barriers. However, these oscillations are distinguishable from those in the fully coherent case, for which a proper treatment of the electron phase is required. We explain the differences in terms of the presence or absence of coherent multiple wave reflections.Comment: 9 pages, 5 figure

    Electric-field dependent spin diffusion and spin injection into semiconductors

    Full text link
    We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.Comment: 5 pages, 3 eps figure

    Relativistic quantum model of confinement and the current quark masses

    Get PDF
    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. Comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227±5, mc=1440±10, mb=4715±20m_s = 227 \pm 5,~ m_c = 1440 \pm 10,~ m_b = 4715 \pm 20. The chiral SU3SU_3 model[23] makes it possible to estimate from here the uu- and dd-quark masses to be mu=6.2±0.2m_u = 6.2 \pm 0.2~ Mev and md=11.1±0.4m_d = 11.1 \pm 0.4 Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D

    Spin relaxation in the impurity band of a semiconductor in the external magnetic field

    Full text link
    Spin relaxation in the impurity band of a 2D semiconductor with spin-split spectrum in the external magnetic field is considered. Several mechanisms of spin relaxation are shown to be relevant. The first one is attributed to phonon-assisted transitions between Zeeman sublevels of the ground state of an isolated impurity, while other mechanisms can be described in terms of spin precession in a random magnetic field during the electron motion over the impurity band. In the later case there are two contributions to the spin relaxation: the one given by optimal impurity configurations with the hop-waiting time inversely proportional to the external magnetic field and another one related to the electron motion on a large scale. The average spin relaxation rate is calculated

    Dynamic Kerr Effect and Spectral Weight Transfer in the Manganites

    Full text link
    We perform pump-probe Kerr spectroscopy in the colossally magnetoresistive manganite Pr0.67Ca0.33MnO3. Kerr effects uncover surface magnetic dynamics undetected by established methods based on reflectivity and optical spectral weight transfer. Our findings indicate the connection between spin and charge dynamics in the manganites may be weaker than previously thought. Additionally, important differences between this system and conventional ferromagnetic metals manifest as long-lived, magneto-optical coupling transients, which may be generic to all manganites.Comment: 12 text pages, 4 figure

    Fabrication and Characterization of Modulation-Doped ZnSe/(Zn,Cd)Se (110) Quantum Wells: A New System for Spin Coherence Studies

    Full text link
    We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on (110) GaAs substrates. Unlike the well-known protocol for the epitaxy of ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of quantum well structures on (110) GaAs requires significantly different growth conditions and sample architecture. We use magnetotransport measurements to confirm the formation of a two-dimensional electron gas in these samples, and then measure transverse electron spin relaxation times using time-resolved Faraday rotation. In contrast to expectations based upon known spin relaxation mechanisms, we find surprisingly little difference between the spin lifetimes in these (110)-oriented samples in comparison with (100)-oriented control samples.Comment: To appear in Journal of Superconductivity (Proceedings of 3rd Conference on Physics and Applications of Spin-dependent Phenomena in Semiconductors

    Coulomb interaction effects in spin-polarized transport

    Get PDF
    We study the effect of the electron-electron interaction on the transport of spin polarized currents in metals and doped semiconductors in the diffusive regime. In addition to well-known screening effects, we identify two additional effects, which depend on many-body correlations and exchange and reduce the spin diffusion constant. The first is the "spin Coulomb drag" - an intrinsic friction mechanism which operates whenever the average velocities of up-spin and down-spin electrons differ. The second arises from the decrease in the longitudinal spin stiffness of an interacting electron gas relative to a noninteracting one. Both effects are studied in detail for both degenerate and non-degenerate carriers in metals and semiconductors, and various limiting cases are worked out analytically. The behavior of the spin diffusion constant at and below a ferromagnetic transition temperature is also discussed.Comment: 9 figure

    Spin diffusion and injection in semiconductor structures: Electric field effects

    Full text link
    In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS+^+) at the FM interface, thus FM/NS+^+/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors

    Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets

    Full text link
    Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and enhancement 700 % greater than that in a YIG film and at very low magnetic fields around 10-1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping with potential applications for spintronic devices.Comment: 17 pages, 4 figure
    • …
    corecore