979 research outputs found

    Effect of a strong laser field on e+ee^+ e^- photoproduction by relativistic nuclei

    Full text link
    We study the influence of a strong laser field on the Bethe-Heitler photoproduction process by a relativistic nucleus. The laser field propagates in the same direction as the incoming high-energy photon and it is taken into account exactly in the calculations. Two cases are considered in detail. In the first case, the energy of the incoming photon in the nucleus rest frame is much larger than the electron's rest energy. The presence of the laser field may significantly suppress the photoproduction rate at soon available values of laser parameters. In the second case, the energy of the incoming photon in the rest frame of the nucleus is less than and close to the electron-positron pair production threshold. The presence of the laser field allows for the pair production process and the obtained electron-positron rate is much larger than in the presence of only the laser and the nuclear field. In both cases we have observed a strong dependence of the rate on the mutual polarization of the laser field and of the high-energy photon and the most favorable configuration is with laser field and high-energy photon linearly polarized in the same direction. The effects discussed are in principle measurable with presently available proton accelerators and laser systems.Comment: 21 pages, 4 figure

    Feasibility of electron cyclotron autoresonance acceleration by a short terahertz pulse

    Full text link
    A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed

    Polarization operator approach to electron-positron pair production in combined laser and Coulomb fields

    Get PDF
    The optical theorem is applied to the process of electron-positron pair creation in the superposition of a nuclear Coulomb and a strong laser field. We derive new representations for the total production rate as two-fold integrals, both for circular laser polarization and for the general case of elliptic polarization, which has not been treated before. Our approach allows us to obtain by analytical means the asymptotic behaviour of the pair creation rate for various limits of interest. In particular, we consider pair production by two-photon absorption and show that, close to the energetic threshold of this process, the rate obeys a power law in the laser frequency with different exponents for linear and circular laser polarization. With the help of the upcoming x-ray laser sources our results could be tested experimentally.Comment: 10 pages, 3 figure

    High-quality multi-GeV electron bunches via cyclotron autoresonance

    Get PDF
    Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used

    Analytic model of a multi-electron atom

    Get PDF
    A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach

    Parametric Mössbauer radiation source

    Get PDF
    Numerous applications of Mossbauer spectroscopy are related to a unique resolution of absorption spectra of resonant radiation in crystals, when the nucleus absorbs a photon without a recoil. However, the narrow nuclear linewidth renders efficient driving of the nuclei challenging, restricting precision spectroscopy, nuclear inelastic scattering and nuclear quantum optics. Moreover, the need for dedicated x-ray optics restricts access to only few isotopes, impeding precision spectroscopy of a wider class of systems. Here, we put forward a novel Mossbauer source, which offers resonant photon flux for a large variety of Mossbauer isotopes with strongly suppressed electronic background. It is based on relativistic electrons moving through a crystal and emitting parametric Mossbauer radiation essentially unattenuated by electronic absorption. As a result, a collimated beam of resonant photons is formed, without the need for additional monochromatization. We envision the extension of high-precision Mossbauer spectroscopy to a wide range of isotopes at accelerator facilities, also using dumped electron beams

    Light diffraction by a strong standing electromagnetic wave

    Full text link
    The nonlinear quantum interaction of a linearly polarized x-ray probe beam with a focused intense standing laser wave is studied theoretically. Because of the tight focusing of the standing laser pulse, diffraction effects arise for the probe beam as opposed to the corresponding plane wave scenario. A quantitative estimate for realistic experimental conditions of the ellipticity and the rotation of the main polarization plane acquired by the x-ray probe after the interaction shows that the implementation of such vacuum effects is feasible with future X-ray Free Electron Laser light.Comment: 5 pages, 2 figures. Published versio
    corecore