7,381 research outputs found
Optical size control in growth of gallium nanoparticles
We report that a low level of optical excitation provides a substantial influence on the size distribution of gallium nanoparticles grown from the atomic beam on a cryogenic substrate, thus providing a new way of achieving tailored films of nanoparticles with given characteristics. The growth experiments, performed in situ in the vacuum chamber of a scanning electron microscope (SEM) equipped with an inverted effusion cell, revealed that the median diameter of the nanoparticles decreases with increasing irradiating optical power, with 0.1, 0.2 and 0.4 mW average power resulting in 70, 50 and 45 nm particles, respectively
Phase-change memory functionality in gallium nanoparticles
We report that the structural phase of gallium nanoparticles can be switched by optical excitation and read via their cathodoluminescence (CL) when excited by a scanning electron beam. This opens a new paradigm in developing high-density phase change optical memory elements. A film of gallium nanoparticles was sputtered at the end face of an optical fiber, through which the reflectivity at 195 K was monitored by a 1.31 µm laser. By launching a single pulse from a 1.55 µm laser (17 mW, 1 µs) to the sample, a solid-to-liquid phase transition was observed as an immediate change of reflectivity from 10.0 to 10.5 %. CL spectra were measured immediately before and after the phase transition. The spectra show that gallium nanoparticles luminesce in the range of 400-650 nm, in which there at 520 nm is a 10 % difference of emission before and after the phase transition, due to a difference in optical properties. In future continuation of this first demonstration of electron beam read-out of the phase of nanoparticles, it is likely that the electron beam itself can change the phase of individual nanoparticles in the film, and that this phase furthermore can be read out at lower power by its cathode luminescence response with the same electron beam
Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance
Infestations with the cattle tick, Rhipicephalus microplus, constitute the most important ectoparasite problem for cattle production in tropical and subtropical regions worldwide, resulting in major economic losses. The control of R. microplus is mostly based on the use of conventional acaricides and macrocyclic lactones. However, the intensive use of such compounds has resulted in tick populations that exhibit resistance to all major acaricide chemical classes. Consequently, there is a need for the development of alternative approaches, possibly including the use of animal husbandry practices, synergized pesticides, rotation of acaricides, pesticide mixture formulations, manual removal of ticks, selection for host resistance, nutritional management, release of sterile male hybrids, environmental management, plant species that are unfavourable to ticks, pasture management, plant extracts, essential oils and vaccination. Integrated tick management consists of the systematic combination of at least two control technologies aiming to reduce selection pressure in favour of acaricide-resistant individuals, while maintaining adequate levels of animal production. The purpose of this paper is to present a current review on conventional acaricide and macrocyclic lactone resistance for better understanding and control of resistant ticks with particular emphasis on R. microplus on cattle
Mass transport mechanism in porous fuel cell electrodes
Results of experiments on hydrogen-oxygen fuel cells show that higher current densities are obtained with cell anodes having a 100 micron thin active layer of porous nickel containing silver electrocatalyst. Increase in current density is attributed to a convective mass transport mechanism
Generation of surface plasmons by electron beam excitation
We report on the first demonstration of excitation of propagating surface plasmon polaritons (SPPs) by injection of a beam of free electrons on an unstructured metal interface, providing a highly localized and intense source of plasmon waves. The plasmons were detected by a grating-assisted decoupling into light at a set of distances from the excitation point. This technique allows the high-resolution mapping of plasmon and photon emission from metal nanostructures
Long time motion of NLS solitary waves in a confining potential
We study the motion of solitary-wave solutions of a family of focusing
generalized nonlinear Schroedinger equations with a confining, slowly varying
external potential, . A Lyapunov-Schmidt decomposition of the solution
combined with energy estimates allows us to control the motion of the solitary
wave over a long, but finite, time interval. We show that the center of mass of
the solitary wave follows a trajectory close to that of a Newtonian point
particle in the external potential over a long time interval.Comment: 42 pages, 2 figure
A streamwise-constant model of turbulent pipe flow
A streamwise-constant model is presented to investigate the basic mechanisms
responsible for the change in mean flow occuring during pipe flow transition.
Using a single forced momentum balance equation, we show that the shape of the
velocity profile is robust to changes in the forcing profile and that both
linear non-normal and nonlinear effects are required to capture the change in
mean flow associated with transition to turbulence. The particularly simple
form of the model allows for the study of the momentum transfer directly by
inspection of the equations. The distribution of the high- and low-speed
streaks over the cross-section of the pipe produced by our model is remarkably
similar to one observed in the velocity field near the trailing edge of the
puff structures present in pipe flow transition. Under stochastic forcing, the
model exhibits a quasi-periodic self-sustaining cycle characterized by the
creation and subsequent decay of "streamwise-constant puffs", so-called due to
the good agreement between the temporal evolution of their velocity field and
the projection of the velocity field associated with three-dimensional puffs in
a frame of reference moving at the bulk velocity. We establish that the flow
dynamics are relatively insensitive to the regeneration mechanisms invoked to
produce near-wall streamwise vortices and that using small, unstructured
background disturbances to regenerate the streamwise vortices is sufficient to
capture the formation of the high- and low-speed streaks and their segregation
leading to the blunting of the velocity profile characteristic of turbulent
pipe flow
Recommended from our members
On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes
Recommended from our members
The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes
An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed
- …