1,933 research outputs found

    Description of two-electron atoms with correct cusp conditions

    Get PDF
    New sets of functions with arbitrary large finite cardinality are constructed for two-electron atoms. Functions from these sets exactly satisfy the Kato's cusp conditions. The new functions are special linear combinations of Hylleraas- and/or Kinoshita-type terms. Standard variational calculation, leading to matrix eigenvalue problem, can be carried out to calculate the energies of the system. There is no need for optimization with constraints to satisfy the cusp conditions. In the numerical examples the ground state energy of the He atom is considered

    Thin accretion disks onto brane world black holes

    Get PDF
    The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude as compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of the vacuum solutions of the brane gravitational field equations, with properties quite distinct as compared to the standard black hole solutions of general relativity. One possibility of observationally discriminating between different types of black holes is the study of the emission properties of the accretion disks. In the present paper we obtain the energy flux, the emission spectrum and accretion efficiency from the accretion disks around several classes of static and rotating brane world black holes, and we compare them to the general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing extra-dimensional physical models by using astrophysical observations of the emission spectra from accretion disks.Comment: 37 pages, 14 figures, accepted for publication in PR

    ÜBER DIE DYNAMISCHE STABILITÄT VON ZWEIMASCHlNEN-SYSTEMEN

    Get PDF

    Direct Identification of the Glass Transition: Growing Length Scale and the Onset of Plasticity

    Full text link
    Understanding the mechanical properties of glasses remains elusive since the glass transition itself is not fully understood, even in well studied examples of glass formers in two dimensions. In this context we demonstrate here: (i) a direct evidence for a diverging length scale at the glass transition (ii) an identification of the glass transition with the disappearance of fluid-like regions and (iii) the appearance in the glass state of fluid-like regions when mechanical strain is applied. These fluid-like regions are associated with the onset of plasticity in the amorphous solid. The relaxation times which diverge upon the approach to the glass transition are related quantitatively.Comment: 5 pages, 5 figs.; 2 figs. omitted, new fig., quasi-crystal discussion omitted, new material on relaxation time

    Medium-resolution echelle spectroscopy of pulsating variables and exoplanet host stars with sub-meter telescopes

    Get PDF
    Here we present two of our interesting results obtained over the last 18 months from spectroscopic monitoring of binary pulsating stars and exoplanet host stars. Our investigations are very promising by demonstrating that modern fiber-fed spectrographs open a whole new chapter in the life of small national and university observatories.Comment: 3 pages, 3 figures. To be published in the proceedings of the workshop on "Observing techniques, instrumentation and science for metre-class telescopes", Sep. 2013, Tatranska Lomnica, Slovaki

    LPV-based quality interpretations on modeling and control of diabetes

    Get PDF
    In this study we introduce different novel interpretations in the case of Linear Parameter Varying (LPV) methodology, which are directly usable in modeling and control design in diabetes research. These novel interpretations are based on the parameter vectors of the LPV parameter space. The theoretical solutions are demonstrated on a simple, known Type 1 Diabetes Model used in intensive care
    corecore