8,178 research outputs found

    Problems with interpretation of 10^{10}He ground state

    Get PDF
    The continuum of 10^{10}He nucleus is studied theoretically in a three-body 8^{8}He+nn+nn model basing on the recent information concerning 9^9He spectrum [Golovkov, \textit{et al.}, Phys. Rev. C \textbf{76}, 021605(R) (2007)]. The 10^{10}He ground state (g.s.) candidate with structure [p1/2]2[p_{1/2}]^2 for new g.s. energy of 9^9He is predicted to be at about 2.02.32.0-2.3 MeV. The peak in the cross section associated with this state may be shifted to a lower energy (e.g. 1.2\sim 1.2 MeV) when 10^{10}He is populated in reactions with 11^{11}Li due to peculiar reaction mechanism. Formation of the low-energy (E<250E< 250 keV) ``alternative'' ground state with structure [s1/2]2[s_{1/2}]^2 is highly probable in 10^{10}He in the case of considerable attraction (e.g. a<5a<-5 fm) in the s-wave 9^9He channel, which properties are still quite uncertain. This result either questions the existing experimental low-energy spectrum of 10^{10}He or place a limit on the scattering length in 9^9He channel, which contradicts existing data.Comment: 14 pages, 13 figures, 1 tabl

    Low polarized emission from the core of coronal mass ejections

    Full text link
    In white-light coronagraph images, cool prominence material is sometimes observed as bright patches in the core of coronal mass ejections (CMEs). If, as generally assumed, this emission is caused by Thomson-scattered light from the solar surface, it should be strongly polarised tangentially to the solar limb. However, the observations of a CME made with the SECCHI/STEREO coronagraphs on 31 August 2007 show that the emission from these bright core patches is exceptionally low polarised. We used the polarisation ratio method of Moran and Davila (2004) to localise the barycentre of the CME cloud. By analysing the data from both STEREO spacecraft we could resolve the plane-of-the-sky ambiguity this method usually suffers from. Stereoscopic triangulation was used to independently localise the low-polarisation patch relative to the cloud. We demonstrated for the first time that the bright core material is located close to the centre of the CME cloud. We show that the major part of the CME core emission, more than 85% in our case, is Hα\alpha radiation and only a small fraction is Thomson-scattered light. Recent calculations also imply that the plasma density in the patch is 8 108^8 cm3^{-3} or more compared to 2.6 106^6 cm3^{-3} for the Thomson-scattering CME environment surrounding the core material.Comment: 5 pages, 3 figure

    Current perpendicular to plane Giant Magnetoresistance (GMR) in laminated nanostructures

    Full text link
    We theoretically studied spin dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of GMR. This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones despite lamination induces a significant increase in CPP resistance.Comment: 4 pages, 2 figure

    Two-proton radioactivity and three-body decay. V. Improved momentum distributions

    Get PDF
    Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 1000 fm. However, the precision of modern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss the extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only the long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the "exactly" solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of the screening by atomic electrons. We compare theoretical results with available experimental data.Comment: 13 pages, 18 figure
    corecore