708 research outputs found
Mott Transitions of Three-Component Fermionic Atoms with Repulsive Interaction in Optical Lattices
We investigate the Mott transitions of three-component (colors) repulsive
fermionic atoms in optical lattices using the dynamical mean field theory. We
find that for SU(3) symmetry breaking interactions the Mott transition occurs
at incommensurate half filling. As a result, a characteristic Mott insulating
state appears, where paired atoms with two different colors and atoms with the
third color are localized at different sites. We also find another Mott state
where atoms with two different colors are localized at different sites and
atoms with the third color remain itinerant. We demonstrate that these exotic
Mott phases can be detected by experimental double occupancy observations.Comment: 5 pages, 4 figure
ABSOLUTE CONTINUITY AND HYPONORMAL OPERATORS
ABSTRACT. Let T be a completely hyponormal operator, wit
Finite-temperature Mott transitions in multi-orbital Hubbard model
We investigate the Mott transitions in the multi-orbital Hubbard model at
half-filling by means of the self-energy functional approach. The phase
diagrams are obtained at finite temperatures for the Hubbard model with up to
four-fold degenerate bands. We discuss how the first-order Mott transition
points and as well as the critical temperature depend
on the orbital degeneracy. It is elucidated that enhanced orbital fluctuations
play a key role to control the Mott transitions in the multi-orbital Hubbard
model.Comment: 8 pages, 7 figure
Field-induced phase transitions in a Kondo insulator
We study the magnetic-field effect on a Kondo insulator by exploiting the
periodic Anderson model with the Zeeman term. The analysis using dynamical mean
field theory combined with quantum Monte Carlo simulations determines the
detailed phase diagram at finite temperatures. At low temperatures, the
magnetic field drives the Kondo insulator to a transverse antiferromagnetic
phase, which further enters a polarized metallic phase at higher fields. The
antiferromagnetic transition temperature takes a maximum when the Zeeman
energy is nearly equal to the quasi-particle gap. In the paramagnetic phase
above , we find that the electron mass gets largest around the field where
the quasi-particle gap is closed. It is also shown that the induced moment of
conduction electrons changes its direction from antiparallel to parallel to the
field.Comment: 7 pages, 6 figure
Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores
Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.2 × 10 pN overcomes the friction force resulting in insignificant adsorption, whereas lowering the drag force from 2.2 × 10 to 4.3 × 10 pN increases the adsorbed mass of hormones from zero to 0.4 ng cm. At a low drag force of 1.6 × 10 pN, the adsorbed mass of four hormones is correlated with the hormone−wall adhesive (van der Waals) force. These findings explain micropollutant adsorption in nanopores via the forces acting on the micropollutant along and perpendicular to the flow, which can be exploited for selectivity
Comparison of Suspected and Confirmed Internal External Ventricular Drain-Related Infections:A Prospective Multicenter United Kingdom Observational Study
BACKGROUND: Diagnosis of internal external ventricular drain (EVD)-related infections (iERI) is an area of diagnostic difficulty. Empiric treatment is often initiated on clinical suspicion. There is limited guidance around antimicrobial management of confirmed versus suspected iERI. METHODS: Data on patients requiring EVD insertion were collected from 21 neurosurgical units in the United Kingdom from 2014 to 2015. Confirmed iERI was defined as clinical suspicion of infection with positive cerebrospinal fluid (CSF) culture and/or Gram stain. Cerebrospinal fluid, blood, and clinical parameters and antimicrobial management were compared between the 2 groups. Mortality and Modified Rankin Scores were compared at 30 days post-EVD insertion. RESULTS: Internal EVD-related infection was suspected after 46 of 495 EVD insertions (9.3%), more common after an emergency insertion. Twenty-six of 46 were confirmed iERIs, mostly due to Staphylococci (16 of 26). When confirmed and suspected infections were compared, there were no differences in CSF white cell counts or glucose concentrations, nor peripheral blood white cell counts or C-reactive protein concentrations. The incidence of fever, meningism, and seizures was also similar, although altered consciousness was more common in people with confirmed iERI. Broad-spectrum antimicrobial usage was prevalent in both groups with no difference in median duration of therapy (10 days [interquartile range {IQR}, 7–24.5] for confirmed cases and 9.5 days [IQR, 5.75–14] for suspected, P = 0.3). Despite comparable baseline characteristics, suspected iERI was associated with lower mortality and better neurological outcomes. CONCLUSIONS: Suspected iERI could represent sterile inflammation or lower bacterial load leading to false-negative cultures. There is a need for improved microbiology diagnostics and biomarkers of bacterial infection to permit accurate discrimination and improve antimicrobial stewardship
Incommensurate state in a quasi-one-dimensional bond-alternating antiferromagnet with frustration in magnetic fields
We investigate the critical properties of the bond-alternating spin
chain with a next-nearest-neighbor interaction in magnetic fields. By the
numerical calculation and the exact solution based on the effective
Hamiltonian, we show that there is a parameter region where the longitudinal
incommensurate spin correlation becomes dominant around the half-magnetization
of the saturation. Possible interpretations of our results are discussed. We
next investigate the effects of the interchain interaction (). The
staggered susceptibility and the uniform magnetization are calculated by
combining the density-matrix renormalization group method with the interchain
mean-field theory. For the parameters where the dominant longitudinal
incommensurate spin correlation appears in the case , the
staggered long-range order does not emerge up to a certain critical value of
around the half-magnetization of the saturation. We calculate the
static structure factor in such a parameter region. The size dependence of the
static structure factor at implies that the system has a
tendency to form an incommensurate long-range order around the
half-magnetization of the saturation. We discuss the recent experimental
results for the NMR relaxation rate in magnetic fields performed for
pentafluorophenyl nitronyl nitroxide.Comment: 10 pages, 12 figures, final version, to appear in PRB vol. 70, No. 5
(2004
Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes
We investigated the electrical properties and charge transport mechanisms of a rubidium-carbonate (Rb2CO3)-doped 4,7-diphenyl-1,10-phenanthroline (Bphen) electron transporting layer (ETL). The electron-only devices and photoemission spectroscopy analysis revealed that the formation of doping-induced gap states dominantly contributes to the improvement of carrier transport characteristics of the doped system. High-efficiency green phosphorescent p-doping/intrinsic/n-doping (p-i-n) organic light emitting diodes were demonstrated using the Rb2CO3-doped Bphen ETL and rhenium oxide (ReO3)-doped N,N-diphenyl-N,N-bis(1,1-biphenyl)-4,4-diamine hole transporting layer, exhibiting an external quantum efficiency of 19.2%, power efficiency of 76 lm/W, and low operation voltage of 3.6 V at 1000 cd/m2.The authors thank the MKE of Korea and Samsung SDI for their
financial support of this work
Critical properties of S=1/2 Heisenberg ladders in magnetic fields
The critical properties of the Heisenberg two-leg ladders are
investigated in a magnetic field. Combining the exact diagonalization method
and the finite-size-scaling analysis based on conformal field theory, we
calculate the critical exponents of spin correlation functions numerically. For
a strong interchain coupling, magnetization dependence of the critical
exponents shows characteristic behavior depending on the sign of the interchain
coupling. We also calculate the critical exponents for the Heisenberg
two-leg ladder with a diagonal interaction, which is thought as a model
Hamiltonian of the organic spin ladder compound
. Numerical results are compared with
experimental results of temperature dependence of the NMR relaxation rate
.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.
Recommended from our members
Fluorescence, pigment and microscopic characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer
Spectral fluorescence measurements of phytoplankton chlorophyll a (Chl a), phytoplankton phycobilipigments and variable fluorescence (Fv/Fm), are utilized with High Performance Liquid Chromatography (HPLC) estimates of phytoplankton pigments and microscopic cells counts to construct a comprehensive picture of summer-time phytoplankton communities and their photosynthetic competency in the eastern Bering Sea shelf. Although the Bering Sea was ice-free during our study, the exceptionally cold winter that preceded the summer of 2008 when our cruise took place, facilitated the formation of a “Cold Pool” (<2 °C) and its entrapment at depth in the northern middle shelf. The presence of a strong pycnocline over the entire middle and outer shelves restricted inorganic nutrient fluxes into the surface waters resulting in phytoplankton populations that were photo-physiologically stressed due to nutrient limitation. Elevated Chl a concentrations recorded in the Green Belt along the shelf edge of the Bering Sea, were due to Phaeocystis pouchetii and nano-sized cryptophytes. Although inorganic nutrients were not limiting in the Green Belt, Fv/Fm values were low in all probability due to iron limitation. Phytoplankton communities in the low biomass surface waters of the middle shelf were comprised of prasinophytes, haptophytes, cryptophytes and diatoms. In the northern part of the middle shelf, a sinking bloom made up of the centric diatoms Chaeotoceros socialis, Thalassiosira nordenskioeldii and Porosira glacialis was located above the Cold Pool. The high biomass associated with this senescent bloom and its accretion above the pycnocline, suggests that the Cold Pool acts as a barrier, preventing sinking phytoplankton from reaching the bottom where they can become available to benthic organisms. We further posit that if summer-time storms are not energetic enough and the Cold Pool is not eroded, its presence facilitates the transfer of the large spring phytoplankton bloom to the pelagic ecosystem
- …