40 research outputs found
The GCC repeat length in the 5'UTR of MRP1 gene is polymorphic: a functional characterization of its relevance for cystic fibrosis
BACKGROUND: Among the members of the ATP binding cassette transporter superfamily, MRPs share the closest homology with the CFTR protein, which is defective in CF disease. MRP1 has been proposed as a potential modifier gene and/or as novel target for pharmacotherapy of CF to explain the clinical benefits observed in some CF patients treated with the macrolide AZM. The 5'UTR of the MRP1 gene contains a GCC triplet repeat that could represent a polymorphic site and affect the activity of the promoter. METHODS: The MRP1 5' flanking region was amplified by PCR from 36 CF patients and 100 non-CF subjects and the number of GCC triplets of each allele was determined by sequence and electrophoretic analysis. We performed gene reporter studies in CF airway epithelial cells 16HBE14o-AS3, in basal conditions and in the presence of AZM. RESULTS: We found that the GCC repeat is polymorphic, ranging from 7 to 14 triplets either in CF or in non-CF subjects. Our data are preliminary and have to be confirmed on a larger population of CF subjects. The transcriptional activity of the proximal MRP1 5' regulatory region revealed no statistically significant correlations between the number of repeats and treatment with AZM. CONCLUSION: We identified a novel polymorphism in the 5'UTR of MRP1 gene that provides multiple alleles in a gene relevant for multidrug resistance as well as for CF, determining that this region is transcriptionally active and that this activity does not appear to be influenced by AZM treatment
Galectin-3 immunodetection in follicular thyroid neoplasms: a prospective study on fine-needle aspiration samples
Fine-needle aspiration cytology, which is well established to be accurate for the diagnosis of thyroid cancer, may be inconclusive for the follicular thyroid neoplasms. As galectin-3 was suggested to be a marker of malignant thyrocytes, we investigated whether this protein might be helpful in the diagnosis of aspirates classified as undeterminate by cytology. After establishing an easy processing of aspirates for galectin-3 immunodetection, a series of aspirates categorised as benign (n=63), malignant (n=17) or undeterminate (n=34) was prospectively analysed for galectin-3. Only the patients with malignant or undeterminate lesions underwent surgery. Most lesions (86%) diagnosed as malignant by cytology or after surgery were positive for galectin-3. The majority of lesions (94%) classified as benign by cytology or after surgery was negative for galectin-3. The positive and negative predictive values were 83 and 95%, respectively. When focusing on the undeterminate lesions, the sensitivity and specificity were 75 and 90%, respectively, while the positive and negative predictive values were 82 and 87%, respectively. The specificity and the positive predictive value were higher (100%) when considering the percentage of stained cells. Altogether these results show that galectin-3 constitutes a useful marker in the diagnosis of thyroid lesions classified as undeterminate by conventional cytology
CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity
BACKGROUND: Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. METHODS: The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). RESULTS: PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. CONCLUSIONS: CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity
Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic
PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)—which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core—are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW–associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi–like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid
Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation
PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel−/−). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel−/− melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation
ATP-binding cassette (ABC) transporters in normal and pathological lung
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
[Characterization of gonadotropic cells in a new pituitary tumor cell line]
The pituitary tumor cell line RC-4B/C was established in The Jackson Laboratory from an aged rat pituitary adenoma. Immunocytochemical studies of this cell line showed that all pituitary cell types were present. Approximately 20% reacted with antisera (AS) to ovine (o) LH beta, 8.6% with AS to oFSH beta, 15% with AS to rat PRL, 12% with AS to equine GH, 9% with AS to porcine TSH beta and 8.6% with AS to ACTH1-24. Using NIDDK rat kits, RIA showed about 0.38, 0.08 and 607.50 ng per 10(6) cells of LH, FSH and PRL, respectively, vs 33.9, 75.6 and 573 ng in freshly dispersed rat pituitary cells. The GnRH receptor content of the cell line was about a half that of normal rat pituitary cells but the receptor affinity was the same. A chronic treatment of the cells for about 5 months with a sub-physiological: concentration (3.7 pM) of a GnRH agonist had 3 major effects: 1) as compared to the controls, a 3-fold increase in the cell number in the log phase; 2) an increase of the percentage of FSH beta cells from 8.6 to 21.9% whereas LH beta cells and the cell content of LH and FSH remained stationary; 3) a decrease of the percentage of PRL cells from 15 to 6.5% and an almost 250-fold decrease of PRL cell content. Incorporation studies with [35S] Met demonstrated that the alpha subunit in the cell line was only partly glycosylated. Pretreatment of the cells with 5 nM estradiol restored, at least partly, glycosylation of alpha.(ABSTRACT TRUNCATED AT 250 WORDS
BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells
International audienc
Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms