512 research outputs found

    The spatial statistical properties of wave functions in a disordered finite one-dimensional sample

    Full text link
    For a given wave function one can define a quantity Ī¼E\mu_E having a meaning of its inverse spatial size. The Laplace transform of the distribution function P(Ī¼E)P(\mu_E) is calculated analytically for a 1D disordered sample with a finite length LL.Comment: LaTEX, 7 pages, Preprint IFUM-456/FT, Milano, Jan.199

    Theory of 4e versus 2e supercurrent in frustrated Josepshon-junction rhombi chain

    Full text link
    We consider a chain of Josepshon-junction rhombi (proposed originally in \cite{Doucot}) in quantum regime, and in the realistic case when charging effects are determined by junction capacitances. In the maximally frustrated case when magnetic flux through each rhombi Ī¦r\Phi_r is equal to one half of superconductive flux quantum Ī¦0\Phi_0, Josepshon current is due to correlated transport of {\em pairs of Cooper pairs}, i.e. charge is quantized in units of 4e4e. Sufficiently strong deviation Ī“Ī¦ā‰”āˆ£Ī¦rāˆ’Ī¦0/2āˆ£>Ī“Ī¦c \delta\Phi \equiv |\Phi_r-\Phi_0/2| > \delta\Phi^c from the maximally frustrated point brings the system back to usual 2e2e-quantized supercurrent. We present detailed analysis of Josepshon current in the fluctuation-dominated regime (sufficiently long chains) as function of the chain length, EJ/ECE_J/E_C ratio and flux deviation Ī“Ī¦ \delta\Phi. We provide estimates for the set of parameters optimized for the observation of 4e4e-supercurrent.Comment: 23 pages, 9 figure

    Vortex Plasma in a Superconducting Film with Magnetic Dots

    Get PDF
    We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of the dots are normal to the film and randomly oriented. We determine how the concentration of the vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration of the vortices, bound to the dots, is proportional to the density of the dots and depends on the magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to the width of a step in the concentration of the bound vortices.Comment: RevTeX, 4 page

    Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations

    Full text link
    We have studied Bloch electrons in a perfect unidirectional superlattice subject to crossed electric and magnetic fields, where the magnetic field is oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of the electric field are considered. It is shown that the magnetic field suppresses the intersubband tunneling of the Zener type, but does not change the frequency of Bloch oscillations, if the electric field is oriented perpendicularly to both the sample plane and the magnetic field. The electric field applied in-plane (but perpendicularly to the magnetic field) yields the step-like electron energy spectrum, corresponding to the magnetic-field-tunable oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.

    Decoherence of number states in phase-sensitive reservoirs

    Full text link
    The non-unitary evolution of initial number states in general Gaussian environments is solved analytically. Decoherence in the channels is quantified by determining explicitly the purity of the state at any time. The influence of the squeezing of the bath on decoherence is discussed. The behavior of coherent superpositions of number states is addressed as well.Comment: 5 pages, 2 figures, minor changes, references adde

    Shape of Deconstruction

    Full text link
    We construct a six-dimensional Maxwell theory using a latticized extra space, the continuum limit of which is a shifted torus recently discussed by Dienes. This toy model exhibits the correspondence between continuum theory and discrete theory, and give a geometrical insight to theory-space model building.Comment: 10 pages, 2 figures, RevTeX4. a citation adde

    Exact Solution for Bulk-Edge Coupling in the Non-Abelian Ī½=5/2\nu=5/2 Quantum Hall Interferometer

    Full text link
    It has been predicted that the phase sensitive part of the current through a non-abelian Ī½=5/2\nu = 5/2 quantum Hall Fabry-Perot interferometer will depend on the number of localized charged e/4e/4 quasiparticles (QPs) inside the interferometer cell. In the limit where all QPs are far from the edge, the leading contribution to the interference current is predicted to be absent if the number of enclosed QPs is odd and present otherwise, as a consequence of the non-abelian QP statistics. The situation is more complicated, however, if a localized QP is close enough to the boundary so that it can exchange a Majorana fermion with the edge via a tunneling process. Here, we derive an exact solution for the dependence of the interference current on the coupling strength for this tunneling process, and confirm a previous prediction that for sufficiently strong coupling, the localized QP is effectively incorporated in the edge and no longer affects the interference pattern. We confirm that the dimensionless coupling strength can be tuned by the source-drain voltage, and we find that not only does the magnitude of the even-odd effect change with the strength of bulk-edge coupling, but in addition, there is a universal shift in the interference phase as a function of coupling strength. Some implications for experiments are discussed at the end.Comment: 12 pages, 3 figure

    Local density approximation for a perturbative equation of state

    Full text link
    The knowledge of a series expansion of the equation of state provides a deep insight into the physical nature of a quantum system. Starting from a generic ``perturbative'' equation of state of a homogeneous ultracold gas we make predictions for the properties of the gas in the presence of harmonic confinement. The local density approximation is used to obtain the chemical potential, total and release energies, Thomas-Fermi size and density profile of a trapped system in three-, two-, and one- dimensional geometries. The frequencies of the lowest breathing modes are calculated using scaling and sum-rule approaches and could be used in an experiment as a high precision tool for obtaining the expansion terms of the equation of state. The derived formalism is applied to dilute Bose and Fermi gases in different dimensions and to integrable one-dimensional models. Physical meaning of expansion terms in a number of systems is discussed.Comment: 3 Figure

    Interaction of Kelvin waves and nonlocality of energy transfer in superfluids

    Get PDF
    We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum

    Characterization of tomographically faithful states in terms of their Wigner function

    Full text link
    A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries a complete information about the operation itself. Tomographically faithful states are a necessary ingredient for tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes.Comment: 9 pages. IOPAMS style. Some improvement
    • ā€¦
    corecore