47 research outputs found

    Multilayer Mie Scattering Model for Investigation of Intracellular Structural Changes in the Nucleolus and Cytoplasm

    Get PDF
    Light scattering from biological cells has been used for many years as a diagnostic tool. Several simulation methods of the scattering process were developed in the last decades in order to understand and predict the scattering patterns. We developed an analytical model of a multilayer spherical scattering cell. Here, we describe the model and show that the results obtained within this simple method are similar to those obtained with far more complicated methods such as finite-difference time-domain (FDTD). The multilayer model is then used to study the effects of changes in the distribution of internal cell structures like mitochondria distribution or nucleus internal structures that exist in biological cells. Such changes are related with cancerous processes within the cell as well as other cell pathologies. Results show the ability to discriminate between different cell stages related to the mitochondria distributions and to internal structure of the nucleolus

    New Insights Into the MVDR Beamformer in Room Acoustics

    Full text link

    Increase in immune cell infiltration with progression of oral epithelium from hyperkeratosis to dysplasia and carcinoma

    Get PDF
    In the present study, epithelium derived lesions of various pathological manifestations were examined histologically and immunohistochemically for mononuclear cell infiltration. The infiltrate under the transformed epithelium of oral lesions, was examined for differences in the composition of immune mononuclear cells as the epithelium moves from hyperkeratosis through various degrees of dysplasia to squamous cell carcinoma. The study was performed on 53 human tongue tissues diagnosed as hyperkeratosis (11 cases), mild dysplasia (nine cases), moderate and severe dysplasia (14 cases) and squamous cell carcinoma (19 cases). A similar analysis was performed on 30 parotid gland tissues diagnosed as pleomorphic adenoma (14 cases) and carcinoma ex-pleomorphic adenoma (16 cases). Immunohistochemical analysis of various surface markers of the tumour infiltrating immune cells was performed and correlated with the transformation level as defined by morphology and the expression of p53 in the epithelium. The results revealed that, in the tongue lesions, the changes in the epithelium from normal appearance to transformed were accompanied by a corresponding increase in the infiltration of CD4, CD8, CD14, CD19+20, and HLA/DR positive cells. The most significant change was an increase in B lymphocytes in tongue lesions, that was in accordance with the transformation level (P<0.001). In the salivary gland, a significant number of cases did not show an infiltrate. In cases where an infiltrate was present, a similar pattern was observed and the more malignant tissues exhibited a higher degree of immune cell infiltration

    Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast

    Get PDF
    Tumor-infiltrating lymphocytes (TILs) provide prognostic value in invasive breast cancer and guidelines for their assessment have been published. This study aims to evaluate: (a) methods of TILs assessment, and (b) their prognostic significance in breast ductal carcinoma in situ (DCIS). Hematoxylin and eosin sections from two clinically annotated DCIS cohorts; a training set (n = 150 pure DCIS) and a validation set (n = 666 comprising 534 pure DCIS and 132 cases wherein DCIS and invasive breast carcinoma were co-existent) were assessed. Seven different scoring methods were applied to the training set to identify the most optimal reproducible method associated with strongest prognostic value. Among different methods, TILs touching ducts' basement membrane or away from it by one lymphocyte cell thickness provided the strongest significant association with outcome and highest concordance rate [inter-cluster correlation coefficient = 0.95]. Assessment of periductal TILs at increasing distances from DCIS (0.2 , 0.5 , and 1 mm) as well as percent of stromal TILs were practically challenging and showed lower concordance rates than touching TILs. TILs hotspots and lymphoid follicles did not show prognostic significance. Within the pure DCIS validation set, dense TILs were associated with younger age, symptomatic presentation, larger size, higher nuclear grade, comedo necrosis and estrogen receptor negativity as well as shorter recurrence-free interval (p = 0.002). In multivariate survival analysis, dense TILs were independent predictor of shorter recurrence-free interval (p = 0.002) in patients treated with breast conservation. DCIS associated with invasive carcinoma showed denser TILs than pure DCIS (p = 9.0 × 10-13). Dense TILs is an independent prognostic variable in DCIS. Touching TILs provides a reproducible method for their assessment that can potentially be used to guide management

    Response of lymphocyte subsets and cytokines to Shenyang prescription in Sprague-Dawley rats with tongue squamous cell carcinomas induced by 4NQO

    Get PDF
    BACKGROUND: The study was designed to investigate immunocompetence in relation to cancer progression in rat and to assess the effect of the traditional Chinese anti-cancer medicine, "Shenyang" prescription, on immunity. METHODS: 4-Nitroquinoline-1-oxide (4NQO) was administered to 80 Sprague-Dawley (SD) rats via the drinking water for up to 36 weeks. Tongue squamous cell carcinoma (SCC) was confirmed by pathological examination in 61 rats. "Shenyang" prescription was administered to subgroups of these rats, and blood samples were taken before and after treatment. Lymphocyte subsets were determined by flow cytometry. Serum Th1 and Th2-type cytokines were assessed by an enzyme-linked immunosorbent assay. RESULTS: As the cancer progressed at the tongue root, the percentage of CD3+CD4+ T lymphocytes and NK cells and the levels of IFN-γ and IL-2 decreased gradually, while the percentage of CD3+CD8+ T lymphocytes and the levels of IL-4 and IL-10 increased. The CD4+/CD8+ ratios were lower in the cancer groups than in the control group. However, after administering "Shenyang" prescription, the levels of CD3+CD4+ T lymphocytes, NK cells, IFN-γ and IL-2 increased, while the CD3+CD8+ T lymphocyte counts and the levels of IL-4 and IL-10 decreased. CONCLUSION: 4NQO-induced lesions were good models for exploring oral cavity carcinogenesis. The rats with 4NQO-induced SCC demonstrated abnormalities in lymphocyte subsets and a shift from Th1-type to Th2-type, which were good models for assessing the effect of anticancer agent on immunity. Oral cancer progression was associated with an aggressive disturbance of immune function. "Shenyang" prescription has the ability to improve the disturbance of immune function

    Single Molecule In Vivo Analysis of Toll-Like Receptor 9 and CpG DNA Interaction

    Get PDF
    Toll-like receptor 9 (TLR9) activates the innate immune system in response to oligonucleotides rich in CpG whereas DNA lacking CpG could inhibit its activation. However, the mechanism of how TLR9 interacts with nucleic acid and becomes activated in live cells is not well understood. Here, we report on the successful implementation of single molecule tools, constituting fluorescence correlation/cross-correlation spectroscopy (FCS and FCCS) and photon count histogram (PCH) with fluorescence lifetime imaging (FLIM) to study the interaction of TLR9-GFP with Cy5 labeled oligonucleotide containing CpG or lacking CpG in live HEK 293 cells. Our findings show that i) TLR9 predominantly forms homodimers (80%) before binding to a ligand and further addition of CpG or non CpG DNA does not necessarily increase the proportion of TLR9 dimers, ii) CpG DNA has a lower dissociation constant (62 nM±9 nM) compared to non CpG DNA (153 nM±26 nM) upon binding to TLR9, suggesting that a motif specific binding affinity of TLR9 could be an important factor in instituting a conformational change-dependant activation, and iii) both CpG and non CpG DNA binds to TLR9 with a 1∶2 stoichiometry in vivo. Collectively, through our findings we establish an in vivo model of TLR9 binding and activation by CpG DNA using single molecule fluorescence techniques for single cell studies

    In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Get PDF
    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy
    corecore