1,739 research outputs found

    Giant acceleration in slow-fast space-periodic Hamiltonian systems

    Full text link
    Motion of an ensemble of particles in a space-periodic potential well with a weak wave-like perturbation imposed is considered. We found that slow oscillations of wavenumber of the perturbation lead to occurrence of directed particle current. This current is amplifying with time due to giant acceleration of some particles. It is shown that giant acceleration is linked with the existence of resonant channels in phase space

    The maximum depth of shower with E sub 0 larger than 10(17) eV on average characteristics of EAS different components

    Get PDF
    The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement

    Muons with E_th >= 1 Gev and Mass Composition in the Energy Range 10^{18}-10^{20} ev Observed by Yakutsk Eas Array

    Full text link
    The ratio of the muon flux density to charged particle flux density at distances of 300 and 600 m from the shower axis (\rhom(300)/\rhos(300) and \rhom(600)/\rhos(600)) is measured. In addition, the energy dependence of \rhom(1000) is analysed for showers with energies above 101810^{18} eV. A comparison between the experimental data and calculations performed with the QGSJET model is given for the cases of primary proton, iron nucleus and gamma- ray. We conclude that the showers with \E\ge3\times10^{18} eV can be formed by light nuclei with a pronounced fraction of protons and helium nuclei. It is not excluded however that a small part of showers with energies above 101910^{19} eV could be initiated by primary gamma-rays.Comment: 19th European Cosmic Ray Symposium, Aug 30 - Sep 3 2004, Florence, Italy. 3 pages, 1 figure. Submitted for publication in International Journal of Modern Physics

    The Ground State of the ``Frozen'' Electron Phase in Two-Dimensional Narrow-Band Conductors with a Long-Range Interelectron Repulsion. Stripe Formation and Effective Lowering of Dimension

    Full text link
    In narrow-band conductors a weakly screened Coulomb interelectron repulsion can supress narrow-band electrons' hopping, resulting in formation of a ``frozen'' electron phase which differs principally from any known macroscopic self-localized electron state including the Wigner crystal. In a zero-bandwidth limit the ``frozen'' electron phase is a classical lattice system with a long-range interparticle repulsion. The ground state of such systems has been considered in the case of two dimensions for an isotropic pair potential of the mutual particle repulsion. It has been shown that particle ordering into stripes and effective lowering of dimension universally resides in the ground state for any physically reasonable pair potential and for any geometry of the conductor lattice. On the basis of this fact a rigorous general procedure to fully describe the ground state has been formulated. Arguments have been adduced that charge ordering in High-T_c superconductors testifies to presence of a ``frozen'' electron phase in these systems.Comment: 5 pages, LaTeX 2.09, 1 figure in external PostScript files. To appear in Phys.Rev B Rapid Communication
    corecore