1,003 research outputs found
Pentaquarks: review of the experimental evidence
Pentaquarks, namely baryons made by 4 quarks and one antiquark have been
predicted and searched for since several decades without success. Theoretical
and experimental advances in the last 2 years led to the observation of a
number of pentaquark candidates. We review the experimental evidence for
pentaquarks as well as their non-observations by some experiments, and discuss
to which extend these sometimes contradicting informations may lead to a
consistent picture.Comment: Contribution to the International Conference on 'Strangeness in Quark
Matter', 15-21 Sept. 2004, Cape Tawn, South Afric
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
The addition of locust bean gum but not water delayed the gastric emptying rate of a nutrient semisolid meal in healthy subjects
BACKGROUND: Most of the previous studies regarding the effects of gel-forming fibres have considered the gastric emptying of liquid or solid meals after the addition of pectin or guar gum. The influence of locust bean gum, on gastric emptying of nutrient semisolid meals in humans has been less well studied, despite its common occurrence in foods. Using a standardised ultrasound method, this study was aimed at investigating if the gastric emptying in healthy subjects could be influenced by adding locust been gum, a widely used thickening agent, or water directly into a nutrient semisolid test meal. METHODS: The viscosity of a basic test meal (300 g rice pudding, 330 kcal) was increased by adding Nestargel (6 g, 2.4 kcal), containing viscous dietary fibres (96.5%) provided as seed flour of locust bean gum, and decreased by adding 100 ml of water. Gastric emptying of these three test meals were evaluated in fifteen healthy non-smoking volunteers, using ultrasound measurements of the gastric antral area to estimate the gastric emptying rate (GER). RESULTS: The median value of GER with the basic test meal (rice pudding) was estimated at 63 %, (range 47 to 84 %), (the first quartile = 61 %, the third quartile = 69 %). Increasing the viscosity of the rice pudding by adding Nestargel, resulted in significantly lower gastric emptying rates (p < 0.01), median GER 54 %, (range 7 to 71 %), (the first quartile = 48 %, the third quartile = 60 %). When the viscosity of the rice pudding was decreased (basic test meal added with water), the difference in median GER 65 %, (range 38 to 79 %), (the first quartile = 56 %, the third quartile = 71 %) was not significantly different (p = 0.28) compared to the GER of the basic test meal. CONCLUSIONS: We conclude that the addition of locust bean gum to a nutrient semisolid meal has a major impact on gastric emptying by delaying the emptying rate, but that the addition of water to this test meal has no influence on gastric emptying in healthy subjects
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber
We present several studies of convolutional neural networks applied to data
coming from the MicroBooNE detector, a liquid argon time projection chamber
(LArTPC). The algorithms studied include the classification of single particle
images, the localization of single particle and neutrino interactions in an
image, and the detection of a simulated neutrino event overlaid with cosmic ray
backgrounds taken from real detector data. These studies demonstrate the
potential of convolutional neural networks for particle identification or event
detection on simulated neutrino interactions. We also address technical issues
that arise when applying this technique to data from a large LArTPC at or near
ground level
Photon-pair jet production via gluon fusion at the LHC
Photon-pair direct or jet-associated productions are important for relevant
standard model measurement, Higgs and new physics searches at the LHC. The
loop-induced gluon-fusion process gg -> \gamma\gamma g, which although formally
contributes only at the next-to-next-to-leading order to \gamma\gamma j
productions, may get enhanced by the large gluon flux at the LHC. We have
checked and confirmed previous results on gg -> \gamma\gamma, \gamma\gamma g at
one loop, using now the traditional Feynman diagram based approach and taking
into account the quark mass effects, and further updated them for the 7 and 14
TeV LHC with new inputs and settings. We provide the details and results of the
calculations, which involves manipulation of rank-5 pentagon integrals. Our
results show that the gluon-fusion process can contribute about 10% of the Born
result, especially at small M_{\gamma\gamma} and PT_{\gamma\gamma}, and
increase further the overall scale uncertainty. Top quark loop effects are
examined in detail, which shows importance near or above the threshold
M_{\gamma\gamma} \gsim 2m_t.Comment: 10 pages, 5 figure
A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
We have developed a convolutional neural network (CNN) that can make a
pixel-level prediction of objects in image data recorded by a liquid argon time
projection chamber (LArTPC) for the first time. We describe the network design,
training techniques, and software tools developed to train this network. The
goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first
demonstration of a network's validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a
charged current neutral pion data samples
- …