127 research outputs found

    PloS one

    Get PDF
    Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFalpha secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC(50) = 1.4 nM) than the other subtypes (PDE4A, IC(50) = 44 nM; PDE4B, IC(50) = 48 nM; and PDE4D, IC(50) = 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (K(i) = 148 nM) in comparison to rolipram (K(i) = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFalpha secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease

    STECF Fisheries Dependent Information – FDI (STECF-19-11)

    Get PDF
    Commission Decision of 25 February 2016 setting up a Scientific, Technical and Economic Committee for Fisheries, C(2016) 1084, OJ C 74, 26.2.2016, p. 4–10. The Commission may consult the group on any matter relating to marine and fisheries biology, fishing gear technology, fisheries economics, fisheries governance, ecosystem effects of fisheries, aquaculture or similar disciplines. The STECF reviewed the report of the EWG on Fisheries-dependent Information during its winter 2019 plenary meeting

    Depletion depth studies with the MALTA2 sensor, a depleted monolithic active pixel sensor

    Get PDF
    MALTA2 is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower 180 nm CMOS imaging process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors both in terms of increased tracking performance due to lower material budget but also in terms of ease of integration and construction costs due to the monolithic design. Current research and development efforts are aimed towards radiation-hard designs up to 100 Mrad in Total Ionizing Dose and 3 × 1015 1 MeV neq / cm2 in Non-Ionizing Energy Loss. One important property of a sensor’s radiation hardness is the depletion depth at which efficient charge collection is achieved via drift movement. Grazing angle test-beam data was taken during the 2023 SPS CERN test beam with the MALTA telescope and Edge Transient Current Technique studies were performed at DESY in order to develop a quantitative study of the depletion depth for un-irradiated, epitaxial MALTA2 samples. The study is planned to be extended for irradiated and Czochralski MALTA2 samples

    Fish Oil Supplementation During Late Pregnancy Does Not Influence Plasma Lipids or Lipoprotein Levels in Young Adult Offspring

    Get PDF
    Nutritional influences on cardiovascular disease operate throughout life. Studies in both experimental animals and humans have suggested that changes in the peri- and early post-natal nutrition can affect the development of the various components of the metabolic syndrome in adult life. This has lead to the hypothesis that n-3 fatty acid supplementation in pregnancy may have a beneficial effect on lipid profile in the offspring. The aim of the present study was to investigate the effect of supplementation with n-3 fatty acids during the third trimester of pregnancy on lipids and lipoproteins in the 19-year-old offspring. The study was based on the follow-up of a randomized controlled trial from 1990 where 533 pregnant women were randomized to fish oil (n = 266), olive oil (n = 136) or no oil (n = 131). In 2009, the offspring were invited to a physical examination including blood sampling. A total of 243 of the offspring participated. Lipid values did not differ between the fish oil and olive oil groups. The relative adjusted difference (95% confidence intervals) in lipid concentrations was −3% (−11; 7) for LDL cholesterol, 3% (−3; 10) for HDL cholesterol, −1% (−6; 5) for total cholesterol,−4% (−16; 10) for TAG concentrations, 2%(−2; 7) for apolipoprotein A1, −1% (−9; 7) for apolipoprotein B and 3% (−7; 15) in relative abundance of small dense LDL. In conclusion, there was no effect of fish oil supplementation during the third trimester of pregnancy on offspring plasma lipids and lipoproteins in adolescence

    Disease Progression in MRL/lpr Lupus-Prone Mice Is Reduced by NCS 613, a Specific Cyclic Nucleotide Phosphodiesterase Type 4 (PDE4) Inhibitor

    Get PDF
    Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFα secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC50 = 1.4 nM) than the other subtypes (PDE4A, IC50 = 44 nM; PDE4B, IC50 = 48 nM; and PDE4D, IC50 = 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (Ki = 148 nM) in comparison to rolipram (Ki = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFα secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease

    Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum

    Get PDF
    Novel polyethersulfone (PES) membranes blended with 0.1–3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes

    The Glycosylation Pattern of Common Allergens: The Recognition and Uptake of Der p 1 by Epithelial and Dendritic Cells Is Carbohydrate Dependent

    Get PDF
    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1–2, 1–3 and 1–6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production

    Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions

    Get PDF
    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots
    corecore