5,425 research outputs found

    Evidence for Nonlinear X-ray Variability from the Broad-line Radio Galaxy 3C 390.3

    Get PDF
    We present analysis of the light curve from the ROSAT HRI monitoring observations of the broad-line radio galaxy 3C 390.3. Observed every three days for about 9 months, this is the first well sampled X-ray light curve on these time scales. The flares and quiescent periods in the light curve suggest that the variability is nonlinear, and a statistical test yields a detection with >6 sigma confidence. The structure function has a steep slope ~0.7, while the periodogram is much steeper with a slope ~2.6, with the difference partially due to a linear trend in the data. The non-stationary character of the light curve could be evidence that the variability power spectrum has not turned over to low frequencies, or it could be an essential part of the nonlinear process. Evidence for X-ray reprocessing suggests that the X-ray emission is not from the compact radio jet, and the reduced variability before and after flares suggests there cannot be two components contributing to the X-ray short term variability. Thus, these results cannot be explained easily by simple models for AGN variability, including shot noise which may be associated with flares in disk-corona models or active regions on a rotating disk, because in those models the events are independent and the variability is therefore linear. The character of the variability is similar to that seen in Cygnus X-1, which has been explained by a reservoir or self-organized criticality model. Inherently nonlinear, this model can reproduce the reduced variability before and after large flares and the steep PDS seen generally from AGN. The 3C 390.3 light curve presented here is the first support for such models to explain AGN variability on intermediate time scales from a few days to months.Comment: 10 pages using (AASTeX) aaspp4.sty and 3 Postscript figures. Astrophysical Journal Letters, in pres

    Integrated photonic quantum gates for polarization qubits

    Get PDF
    Integrated photonic circuits have a strong potential to perform quantum information processing. Indeed, the ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for polarization encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.Comment: 6 pages, 4 figure

    Detection of circumstellar material in a normal Type Ia Supernova

    Get PDF
    Type Ia supernovae are thought to be thermonuclear explosions of accreting white dwarfs that reach a critical mass limit. Despite their importance as cosmological distance indicators, the nature of their progenitors has remained controversial. Here we report the detection of circumstellar material in a normal Type Ia supernova. The expansion velocities, densities and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. The relatively low expansion velocities appear to favor a progenitor system where a white dwarf accretes material from a companion star which is in the red-giant phase at the time of explosion.Comment: 25 pages, 7 figures. Accepted for publication in Science. Full resolution version at http://www.hq.eso.org/~fpatat/science/sn06X/preprint.pdf . The original paper can be found at http://www.sciencemag.org/cgi/content/abstract/114300
    • …
    corecore