1,984 research outputs found

    Peculiarities of the Weyl - Wigner - Moyal formalism for scalar charged particles

    Get PDF
    A description of scalar charged particles, based on the Feshbach-Villars formalism, is proposed. Particles are described by an object that is a Wigner function in usual coordinates and momenta and a density matrix in the charge variable. It is possible to introduce the usual Wigner function for a large class of dynamical variables. Such an approach explicitly contains a measuring device frame. From our point of view it corresponds to the Copenhagen interpretation of quantum mechanics. It is shown how physical properties of such particles depend on the definition of the coordinate operator. The evolution equation for the Wigner function of a single-charge state in the classical limit coincides with the Liouville equation. Localization peculiarities manifest themselves in specific constraints on possible initial conditions.Comment: 16 pages, 2 figure

    Search for evidence of two photon contribution in elastic electron proton data

    Full text link
    We reanalyze the most recent data on elastic electron proton scattering. We look for a deviation from linearity of the Rosenbluth fit to the differential cross section, which would be the signature of the presence of two photon exchange. The two photon contribution is parametrized by a one parameter formula, based on symmetry arguments. The present data do not show evidence for such deviation.Comment: 15 pages 3 figures More details on the fitting procedure, more explicit explanation

    Single parameter scaling in 1-D localized absorbing systems

    Get PDF
    Numerical study of the scaling of transmission fluctuations in the 1-D localization problem in the presence of absorption is carried out. Violations of single parameter scaling for lossy systems are found and explained on the basis of a new criterion for different types of scaling behavior derived by Deych et al [Phys. Rev. Lett., {\bf 84}, 2678 (2000)].Comment: 7 pages, 6 figures, RevTex, submitted to Phys. Rev.

    New asymptotic behaviour of the surface-atom force out of thermal equilibrium

    Full text link
    The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z31/z^3 at large distances (i.e. slower than at equilibrium), exhibits a sizable temperature dependence and is attractive or repulsive depending on whether the temperature of the substrate is higher or smaller than the one of the environment. Our predictions can be relevant for experiments with ultracold atomic gases. Both dielectric and metal substrates are considered.Comment: 4 pages, 3 figures. In press on Phys. Rev. Let

    Polarization effects in the reaction e++eρ++ρe^++e^-\to \rho^+ +\rho^- and determination of the ρ\rho - meson form factors in the time--like region

    Full text link
    The electron positron annihilation reaction into four pion production has been studied, through the channel e++eρˉ+ρe^++e^-\to \bar \rho+\rho . The differential (and total) cross sections and various polarization observables for this reaction have been calculated in terms of the electromagnetic form factors of the corresponding γρρ\gamma^*\rho\rho current. The elements of the spin--density matrix of the ρ\rho -meson were also calculated. Numerical estimations have been done, with the help of phenomenological form factors obtained in the space--like region of the momentum transfer squared and analytically extended to the time-like region.Comment: 19 pages, 2 figures, to appear in Phys Rev

    The RANLUX generator: resonances in a random walk test

    Get PDF
    Using a recently proposed directed random walk test, we systematically investigate the popular random number generator RANLUX developed by Luescher and implemented by James. We confirm the good quality of this generator with the recommended luxury level. At a smaller luxury level (for instance equal to 1) resonances are observed in the random walk test. We also find that the lagged Fibonacci and Subtract-with-Carry recipes exhibit similar failures in the random walk test. A revised analysis of the corresponding dynamical systems leads to the observation of resonances in the eigenvalues of Jacobi matrix.Comment: 18 pages with 14 figures, Essential addings in the Abstract onl

    Analysis of polarization observables and radiative effects for the reaction pˉ+pe++e\bar p+p\rightarrow e^++e^-

    Full text link
    The expressions for the differential cross section and of the polarization observables for the reaction pˉ+pe++e\bar p+p\rightarrow e^++e^- are given in terms of the nucleon electromagnetic form factors in the laboratory system. Radiative corrections due to the emission of virtual and real soft photons from the leptons are also calculated. Unlike the center-of- mass system case, they depend on the scattering angle. Polarization effects are derived in the case when the antiproton beam, the target and the electron in the final state are polarized. Numerical estimations have been done for all observables for the PANDA experimental conditions using models for the nucleon electromagnetic form factors in the time-like region. The radiative corrections to the differential cross section are calculated as function of the beam energy and of the electron angle.Comment: 18 pages, 8 figure

    Anomalously large critical regions in power-law random matrix ensembles

    Full text link
    We investigate numerically the power-law random matrix ensembles. Wavefunctions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger than the system size. The Green's functions decrease with distance as a power law with an exponent related to the correlation dimension.Comment: RevTex, 4 pages, 4 eps figures. Final version to be published in Phys. Rev. Let

    Could Only Fermions Be Elementary?

    Full text link
    In standard Poincare and anti de Sitter SO(2,3) invariant theories, antiparticles are related to negative energy solutions of covariant equations while independent positive energy unitary irreducible representations (UIRs) of the symmetry group are used for describing both a particle and its antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant theory. We argue that it would be more natural to require that (*) one UIR should describe a particle and its antiparticle simultaneously. This would automatically explain the existence of antiparticles and show that a particle and its antiparticle are different states of the same object. If (*) is adopted then among the above groups only the SO(1,4) one can be a candidate for constructing elementary particle theory. It is shown that UIRs of the SO(1,4) group can be interpreted in the framework of (*) and cannot be interpreted in the standard way. By quantizing such UIRs and requiring that the energy should be positive in the Poincare approximation, we conclude that i) elementary particles can be only fermions. It is also shown that ii) C invariance is not exact even in the free massive theory and iii) elementary particles cannot be neutral. This gives a natural explanation of the fact that all observed neutral states are bosons.Comment: The paper is considerably revised and the following results are added: in the SO(1,4) invariant theory i) the C invariance is not exact even for free massive particles; ii) neutral particles cannot be elementar
    corecore