19 research outputs found

    Analysis, Isolation, and Activation of Antigen-Specific CD4 + and CD8+ T Cells by Soluble MHC-Peptide Complexes

    Get PDF
    T cells constitute the core of adaptive cellular immunity and protect higher organisms against pathogen infections and cancer. Monitoring of disease progression as well as prophylactic or therapeutic vaccines and immunotherapies call for conclusive detection, analysis, and sorting of antigen-specific T cells. This is possible by means of soluble recombinant ligands for T cells, i.e., MHC class I-peptide (pMHC I) complexes for CD8(+) T cells and MHC class II-peptide (pMHC II) complexes for CD4(+) T cells and flow cytometry. Here we review major developments in the development of pMHC staining reagents and their diverse applications and discuss perspectives of their use for basic and clinical investigations

    Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand

    Get PDF
    Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(η6-p-cymene)(L1–7)Cl] were synthesized and characterized, of which the complex with L = isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC50 values determined after 48 h of incubation (45.4 ± 3.0 vs. 84.2 ± 5.7 μM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru/106 cells after 6 h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate

    Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patients-Report of a Phase I/IIa Clinical Trial.

    Get PDF
    PURPOSE: Cancer vaccines aim to generate and maintain antitumor immune responses. We designed a phase I/IIa clinical trial to test a vaccine formulation composed of Montanide ISA-51 (Incomplete Freund's Adjuvant), LAG-3Ig (IMP321, a non-Toll like Receptor agonist with adjuvant properties), and five synthetic peptides derived from tumor-associated antigens (four short 9/10-mers targeting CD8 T-cells, and one longer 15-mer targeting CD4 T-cells). Primary endpoints were safety and T-cell responses. EXPERIMENTAL DESIGN: Sixteen metastatic melanoma patients received serial vaccinations. Up to nine injections were subcutaneously administered in three cycles, each with three vaccinations every 3 weeks, with 6 to 14 weeks interval between cycles. Blood samples were collected at baseline, 1-week after the third, sixth and ninth vaccination, and 6 months after the last vaccination. Circulating T-cells were monitored by tetramer staining directly ex vivo, and by combinatorial tetramer and cytokine staining on in vitro stimulated cells. RESULTS: Side effects were mild to moderate, comparable to vaccines with Montanide alone. Specific CD8 T-cell responses to at least one peptide formulated in the vaccine preparation were found in 13 of 16 patients. However, two of the four short peptides of the vaccine formulation did not elicit CD8 T-cell responses. Specific CD4 T-cell responses were found in all 16 patients. CONCLUSIONS: We conclude that vaccination with IMP321 is a promising and safe strategy for inducing sustained immune responses, encouraging further development for cancer vaccines as components of combination therapies. Clin Cancer Res; 22(6); 1330-40. ©2015 AACR

    Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery

    Get PDF
    The erosion response under cavitation of different steel grades was assessed by studying the erosion rate, the volume removal, the roughness evolution, and the accumulated strain energy. A 20 kHz ltrasonic transducer with a probe diameter of 5 mm and peak-to-peak amplitude of 50 lm was deployed in distilled water to induce damage on the surface of commercial chromium and carbon steel samples. After a relatively short incubation period, cavitation induced the formation of pits, cracks, and craters whose features strongly depended on the hardness and composition of the tested steel. AISI 52100 chromium steel showed the best performance and is, therefore, a promising design candidate for replacing the existing fluid machinery materials that operate within potential cavitating environments

    NY-ESO-1-Specific Circulating CD4+ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25+FOXP3+Treg Compartment

    Get PDF
    Spontaneous CD4+ T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4+ T cells in EOC patients with spontaneous immune responses to the antigen are prevalently TH1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer+ cells ex vivo, at an average frequency of 1∶25000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer+ cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25+FOXP3+Treg. Thus, spontaneous CD4+ T-cell responses to ESO in cancer patients are prevalently of TH1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines

    Assessment of vaccine-induced CD4 T cell responses to the 119-143 immunodominant region of the tumor-specific antigen NY-ESO-1 using DRB1*0101 tetramers.

    No full text
    Abstract: Purpose: NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO119-143 region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO119-143 tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). Experimental Design: We generated tetramers of DRB1*0101 incorporating peptide ESO119-143 using a previously described strategy. We assessed ESO119-143-specific CD4 T cells in peptide-stimulated post-vaccine cultures using the tetramers. We isolated DR1/ESO119-143 tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO119-143 tetramer(+) T cells ex vivo and characterized them phenotypically. Results: Staining of cultures from vaccinated patients with DR1/ESO119-143 tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO123-137 as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO119-143 tetramer(+) cells using T cell receptor (TCR) beta chain variable region (V beta)-specific antibodies, we identified several frequently used V beta. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. Conclusions: The development of DR1/ESO119-143 tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patient

    MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    No full text
    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers

    In silico and cell-based analyses reveal strong divergence between prediction and observation of T-cell-recognized tumor antigen T-cell epitopes.

    No full text
    Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by in silico algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted in silico the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8(+) T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by in silico algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of in silico-predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving in silico predictions of peptide immunogenicity
    corecore