10,594 research outputs found

    Deutsch-Jozsa algorithm as a test of quantum computation

    Full text link
    A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a refined algorithm, which reduces the size of the register and simplifies the function evaluation, is proposed. The refined version allows a simpler analysis of the use of entanglement between the qubits in the algorithm and provides criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev

    Operations and single particle interferometry

    Full text link
    Interferometry of single particles with internal degrees of freedom is investigated. We discuss the interference patterns obtained when an internal state evolution device is inserted into one or both the paths of the interferometer. The interference pattern obtained is not uniquely determined by the completely positive maps (CPMs) that describe how the devices evolve the internal state of a particle. By using the concept of gluing of CPMs, we investigate the structure of all possible interference patterns obtainable for given trace preserving internal state CPMs. We discuss what can be inferred about the gluing, given a sufficiently rich set of interference experiments. It is shown that the standard interferometric setup is limited in its abilities to distinguish different gluings. A generalized interferometric setup is introduced with the capacity to distinguish all gluings. We also connect to another approach using the well known fact that channels can be realized using a joint unitary evolution of the system and an ancillary system. We deduce the set of all such unitary `representations' and relate the structure of this set to gluings and interference phenomena.Comment: Journal reference added. Material adde

    Extended Quantum XOR Gate in Terms of Two-Spin Interactions

    Get PDF
    Considerations of feasibility of quantum computing lead to the study of multispin quantum gates in which the input and output two-state systems (spins) are not identical. We provide a general discussion of this approach and then propose an explicit two-spin interaction Hamiltonian which accomplishes the quantum XOR gate function for a system of three spins: two input and one output.Comment: 15 pages in plain TeX with 1 Postscript figur

    Holographic data storage in a DX-center material

    Get PDF
    We report on the optical storage of digital data in a semiconductor sample containing DX centers. The diffraction efficiency and the bit-error-rate performance of multiplexed data images are shown to agree well with a simple model of the material. Uniform storage without an exposure schedule is demonstrated. The volume sensitivity is found to be ~10^3 times that of LiNBO3:Fe. The importance of coherent addition of scattered light with diffracted light in holographic data storage is discussed

    Programmable purification of type-I polarization-entanglement

    Get PDF
    We suggest and demonstrate a scheme to compensate spatial and spectral decoherence effects in the generation of polarization entangled states by type-I parametric downconversion. In our device a programmable spatial light modulator imposes a polarization dependent phase-shift on different spatial sections of the overall downconversion output and this effect is exploited to realize an effective purification technique for polarization entanglement.Comment: published versio

    Quantum parallelism of the controlled-NOT operation: an experimental criterion for the evaluation of device performance

    Get PDF
    It is shown that a quantum controlled-NOT gate simultaneously performs the logical functions of three distinct conditional local operations. Each of these local operations can be verified by measuring a corresponding truth table of four local inputs and four local outputs. The quantum parallelism of the gate can then be observed directly in a set of three simple experimental tests, each of which has a clear intuitive interpretation in terms of classical logical operations. Specifically, quantum parallelism is achieved if the average fidelity of the three classical operations exceeds 2/3. It is thus possible to evaluate the essential quantum parallelism of an experimental controlled-NOT gate by testing only three characteristic classical operations performed by the gate.Comment: 6 pages, no figures, added references and discussio

    Robustness of Device Independent Dimension Witnesses

    Full text link
    Device independent dimension witnesses provide a lower bound on the dimensionality of classical and quantum systems in a "black box" scenario where only correlations between preparations, measurements and outcomes are considered. We address the problem of the robustness of dimension witnesses, namely that to witness the dimension of a system or to discriminate between its quantum or classical nature, even in the presence of loss. We consider the case when shared randomness is allowed between preparations and measurements and we provide a threshold in the detection efficiency such that dimension witnessing can still be performed.Comment: 8 pages, 5 figures, published versio

    Quantum Computers, Factoring, and Decoherence

    Get PDF
    In a quantum computer any superposition of inputs evolves unitarily into the corresponding superposition of outputs. It has been recently demonstrated that such computers can dramatically speed up the task of finding factors of large numbers -- a problem of great practical significance because of its cryptographic applications. Instead of the nearly exponential (expL1/3\sim \exp L^{1/3}, for a number with LL digits) time required by the fastest classical algorithm, the quantum algorithm gives factors in a time polynomial in LL (L2\sim L^2). This enormous speed-up is possible in principle because quantum computation can simultaneously follow all of the paths corresponding to the distinct classical inputs, obtaining the solution as a result of coherent quantum interference between the alternatives. Hence, a quantum computer is sophisticated interference device, and it is essential for its quantum state to remain coherent in the course of the operation. In this report we investigate the effect of decoherence on the quantum factorization algorithm and establish an upper bound on a ``quantum factorizable'' LL based on the decoherence suffered per operational step.Comment: 7 pages,LaTex + 2 postcript figures in a uuencoded fil
    corecore